
 CS 111: Introduction to Computer Science

 Fall 2022 Semester

 Professors: Nancy Fulda and Brett Decker

 MIDTERM 2 REVIEW

 Student Name: ______________________________

 Student ID#: ______________________________

 1. (7 points) StackingTurtles
 Look at the following class definition and answer the questions below.

 class Turtle :

 def __init__ (self , name , below = None , above = None):

 self . name = name

 self . below = below

 if below :

 self . below .above = self

 self . above = above

 _____ (a) ______ :

 _____ (b) ___________

 def climb_down (self):

 '''Cause this turtle to climb down from its current stack of turtles. The

 turtles above this turtle stay in place, and a new stack of turtles is made, where

 this turtle is the bottom turtle. If this turtle is already the bottom turtle, this

 function does nothing.

 '''

 if self.below :

 self . below .above = None

 self.below = None

 def climb_up (self, other):

 '''Cause this turtle to climb up the stack of turtles containing the other

 turtle, making one stack from two stacks, or two different stacks from two existing

 stacks. (self and other should not be in the same stack of turtles). The turtles

 above this turtle stay in place, and this turtle becomes the first turtle on top of

 the other stack.

 '''

 if self.below :

 self.below.above = None

 next = other

 while _ (c) _ :

 next = next.above

 self.below = next

 next.above = self

 def stack_height (self):

 '''Return the height of the stack that includes this turtle (the number of

 turtles in the stack).

 '''

 height = 1

 next = self

 while next.below :

 height += 1

 next = next.below

 next = self

 while next.above :

 height += 1

 _ (d) _

 return height

 def __repr__ (self):

 prev = '' if not self . behind else f ',below= { self . below } '

 nxt = '' if not self . in_front else f ',above= { self . in_above } '

 return f 'Turtle(\' { self . name } \' { prev }{ nxt })'

 def __str__ (self):

 return self . name

 (a) (1 pt) What line of code could go in blank (a) ?

 if above:

 (b) (1 pt) What line of code could go in blank (b) ?

 self.above.below = self

 (c) (1 pt) What line of code could go in blank (c) ?

 next.above

 (d) (1 pt) What line of code could go in blank (d) ?

 next = next.above

 Now, consider objects being created and displayed as follows:

 >>> bowser = Turtle('Bowser')

 >>> franklin = Turtle('Franklin',below=bowser)

 >>> michelangelo = Turtle('Michelangelo',below=franklin)

 >>> yertle = Turtle('Yertle',below=michelangelo)

 >>> yertle

 Turtle('Yertle',below=Michelangelo)

 >>> michelangelo

 Turtle('Michelangelo',below=Franklin,above=Yertle)

 >>> franklin

 Turtle('Franklin',below=Bowser,above=Michelangelo)

 >>> Bowser

 Frog('Bowser',above=Franklin)

 Here is the current state of our stack of turtles:

 Yertle
 Michelangelo
 Franklin
 Bowser

 (e) (2 pts) What two lines of code (use the existing functions) would modify the stack of turtles so that it
 matched the two stacks below?

 yertle.climb_down()
 franklin.climb_up(yertle)

 Michelangelo
 Franklin

 Bowser Yertle

 (f) (1 pt) Now, after executing the lines below (from the state immediately above), how will the turtles be
 stacked? Use the letters B, F, M and Y to represent the stacked turtles.

 >>> michelangelo.climb_up(bowser) Y

 >>> yertle.climb_up(bowser) M

 >>> franklin.climb_down() B F

 3. (7 points) Infinite Generator for Fibonacci Numbers
 Definition . An infinite iterator, t , is one for which next(t) can be called any number of times and always
 returns a value.

 Implement fibonacci_numbers , a generator function that creates an infinite iterator for fibonacci numbers.

 def fibonacci_numbers ():

 """Infinite Generator for fibonacci numbers starting at 0.

 >>> fibs = fibonacci_numbers()

 >>> next(primes)

 0

 >>> next(primes) # Second call

 1

 >>> next(primes) # Third call

 1

 >>> next(primes) # Fourth call

 2

 >>> next(primes) # Fifth call

 3

 """

 next = 0

 after = 1

 while ((a)):

 yield (b)

 temp = next + after

 next = (c)

 after = (d)

 (a) (2 pts) What line of code could go in blank a)?

 True

 (b) (2 pts) What line of code could go in blank b)?

 next

 (c) (2 pts) What line of code could go in blank c)?

 after

 (d) (2 pts) What line of code could go in blank d)?

 temp

 (e) (1 pt) Does an infinite iterator ever throw a StopIteration exception?
 Yes
 No

 4. (8 points) Generators for Recursive Objects: Link and Tree
 (This practice problem only includes trees. Try thinking about how you might print the labels in a list in order
 from the beginning of the list? From the end of the list?)

 A Binary Tree is a tree data structure where each Tree node only has two branches, which are called left and
 right . Each Tree node’s left branch contains zero or more Tree nodes. Each Tree node’s right branch contains
 zero or more Tree nodes.

 The code below defines a class called BinaryTree that is a recursive object and has a left and right
 branch.

 class BinaryTree :

 """A binary tree."""

 empty = ()

 def __init__ (self , label , left = empty , right = empty):

 self . label = label

 self . left = left

 self . right = right

 def is_leaf (self):

 """

 >>> t = BinaryTree(1)

 >>> t.is_leaf()

 True

 >>> t = BinaryTree(5, BinaryTree(3), BinaryTree(7))

 >>> t.is_leaf()

 False

 """

 return not self . left and not self . right

 We want to create a generator for a BinaryTree to return the labels of the tree in a specific order, called
 preorder (you did something similar for our regular Tree objects in HW05). A preorder traversal first visits the
 node itself, then the left and right nodes in order.

 For the tree below, it would visit in this order:
 13, 5, 2, 1, 3, 8, 21

 Given these three code snippets:
 1. if t.left:

 yield from preorder(t.left)
 2. yield t.label
 3. if t.right:

 yield from preorder(t.right)

 def preorder (t):
 """Yield the entries in this tree in the order that they
 would be visited by a preorder traversal (see problem description).

 "*** YOUR CODE HERE ***"
 __(A)__
 __(B)__
 __(C)__

 Which snippet would go in (A)? 2

 Which snippet would go in (B)? 1

 Which snippet would go in (C)? 3

 A postorder traversal for a BinaryTree would return the labels of the tree in a different order. A postorder
 traversal first visits the left and right nodes in order, then the node itself.

 For the tree below, it would visit in this order:
 1, 3, 2, 8, 5, 21,13

 Given these three code snippets:
 4. if t.left:

 yield from postorder(t.left)
 5. yield t.label
 6. if t.right:

 yield from postorder(t.right)

 def preorder (t):
 """Yield the entries in this tree in the order that they
 would be visited by a preorder traversal (see problem description).

 "*** YOUR CODE HERE ***"
 __(A)__
 __(B)__
 __(C)__

 Which snippet would go in (A)? 4

 Which snippet would go in (B)? 6

 Which snippet would go in (C)? 5

 There are lots of other ways to order a tree. See Tree traversal - Wikipedia for more information.

https://en.wikipedia.org/wiki/Tree_traversal

 6. (8 points) Classes/Objects - Fill-in-the-blank and WWPD

 Consider the following class definitions:

 class Bookshelf :

 def __init__ (self , capacity , books =[]):

 self . capacity = capacity

 self.books = []

 for book in books:

 self. addBook (book)

 def addBook (self , book):

 if len(self.books) == capacity:

 print (f 'Bookshelf is full. Could not add \' { book . title } \'.')

 return

 if (a) :

 self . books .append(book)

 def __add__ (self , other):

 if isinstance (other , Bookshelf):

 return [self , other]

 elif isinstance (other , Book):

 shelf2 = Bookshelf (self . capacity ,list(self . books))

 shelf2 . addBook (other)

 return shelf2

 def __str__ (self): # this gets called by print() and str()

 book_string = ', ' . join ([str (a) for a in self . books])

 space = self.capacity - len (books)

 return f 'Books: { book_string } ; This shelf can fit { space } more books'

 def __repr__ (self): # this gets called by repr() or when the object is displayed

 within an iterable/collection

 book_string = ',' . join ([repr (a) for a in self . books])

 return f 'Bookshelf({ self . capacity } ,[{ book_string }])'

 class Book :

 def (b) :

 self . title , self . author = title , author

 def (c) :

 return f 'Book(\' { self . title } \',\' { self . author } \')'

 def (d) :

 return self . title + ', written by ' + self . author

 Indicate what should appear in blanks (a) - (d) above:

 (a) (1 pt) Which of the following should appear in blank (a)
 is Book('Frankenstein','Mary Shelley')

 == Book('Frankenstein','Mary Shelley')

 isinstance(book, Bookshelf)

 isinstance(book, Book)

 == new Book()

 (b) (2 pts) Which of the following should appear in blank (b)
 __init__(self, title, author)

 __add__(self, other)

 __repr__(self)

 __act__(self)

 __str__(self)

 (c) (1 pt) Which of the following should appear in blank (c)
 __init__(self, author, title)

 __add__(self, other)

 __repr__(self)

 __act__(self)

 __str__(self)

 (d) (1 pt) Which of the following should appear in blank (d)
 __init__(self, author, title)

 __add__(self, other)

 __repr__(self)

 __act__(self)

 __str__(self)

 Given the code below, what would Python display for each of the following?

 fiction_shelf = Bookshelf (10)

 nonfiction_shelf = Bookshelf (1)

 frankenstein = Book ('Frankenstein' , 'Mary Shelley')

 coraline = Book ('Coraline' , 'Neil Gaiman')

 print (frankenstein) (e)

 adams = Book ('John Adams' , 'David McCullough')

 hamilton = Book ('Alexander Hamilton' , 'Ron Chernow')

 nonfiction_shelf. addBook (adams)

 nonfiction_shelf += hamilton (f)

 fiction_shelf. addBook (frankenstein)

 fiction_shelf += coraline

 str (fiction_shelf) (g)

 (e) (1 pt) Which of the following would be displayed by executing (e)
 Coraline

 Frankenstein

 Book('Frankenstein','Mary Shelley')

 'Frankenstein'

 'Frankenstein, written by Mary Shelley'

 (f) (1 pt) Which of the following would be displayed by executing (f)
 Nothing

 Bookshelf is full. Could not add 'Alexander Hamilton'.

 [Book('John Adams','David McCullough'),Book('Alexander Hamilton','Ron
 Chernow')]

 Alexander Hamilton, written by Ron Chernow

 [Bookshelf(1,'John Adams, Alexander Hamilton’)]

 (g) (1 pt) What would be displayed by executing (g)

 ‘Books: Frankenstein, written by Mary
 Shelley, Coraline, written by Neil Gaiman;
 This shelf can fit 8 more books’

 7. (7 points) OOP Inheritance / Polymorphism: Programmers
 Suppose we have software that simulates the effectiveness of programmers. Programmers have different
 amounts of experience and respond differently to stimuli. Each programmer has shaped properties, but there
 are many different types of programmers. This type of categorization and hierarchy lends itself to using
 inheritance and polymorphism with Object-Oriented Programming (OOP). Consider the following class
 Programmer .

 class Programmer :

 def __init__ (self , name , typing_speed , experience):

 """Create a Programmer with the given NAME, TYPING_SPEED, and EXPERIENCE.

 name -- A string; The name of the programmer.

 typing_speed -- A number; How quickly this programmer can type (lines per

 minute) when they understand the problem they are solving.

 experience -- A number; Number of years the programmer has been programming,

 corresponds to the difficulty of problems they can immediately understand.

 """

 self . name = name

 self . typing_speed = typing_speed

 self . experience = experience

 def __str__ (self):

 return f " { self . name } : typing_speed { self . typing_speed } , and experience

 { self . experience } "

 def action (self):

 """The action performed by the programmer.

 """

 Every Programmer has a name, typing_speed (how many lines can they add to the program in one action),
 and a number of years of experience. Let us consider two possible subclasses of Programmer :
 CS111Student and TA . Their implementations are on the next few pages.

 class CS111Student (Programmer):

 recharge_speed = 10 ;

 def __init__ (self , typing_speed , experience = 1 , ta):

 """The CS111Student has a default experience of 1.

 name -- A string; the student’s name.

 typing_speed -- A number; the lines of code per action this student can write.

 experience -- A number; Total years of experience.

 """

 super (). __init__ (name , typing_speed , experience)

 self.ta = ta

 ta.add_student(self)

 self . energy_supply = 10

 def action (self, problem_difficulty):

 """The action performed by the student.

 problem_difficulty -- A number; the experience needed to immediately

 understand the problem being worked on.

 """

 if self . energy_supply > 0 :

 if (self . experience >= problem_difficulty):

 self.energy_supply -= 1

 print (f "All right! { self . name } added { self . typing_speed } lines of

 code.")

 else :

 print ("We need to ask a TA for help")

 ta . give_help (self)

 else :

 print ("We need to take a rest")

 self . energy_supply += self.recharge_speed

 def receive_help (self , helper):

 """The action performed by the student when they receive help.

 helper -- A programmer; The programmer helping this programmer

 """

 if helper.experience > self.experience:

 self . experience += 1

 print ("Thanks for the help! I’ll keep trying on this problem.")

 else :

 self . experience += .5

 helper.experience += .5

 print ("Two heads are better than one! Let’s keep trying on this

 problem.")

 def give_help (self, other):

 if self . energy_supply > 0 :

 self.energy_supply -= 1

 other.receive_help(self)

 print ("Thanks for letting me help you!")

 else :

 print ("Sorry, I need to take a rest first.")

 self . energy_supply += self.recharge_speed

 class TA (Programmer):

 recharge_speed = 10 ;

 lines_per_project = 15 ;

 def __init__ (self , name , typing_speed , experience= 3 , students = []):

 """The TA writes code to increase their experience, and gives help to all

 their students when they finish what they are working on.

 name -- A string; The TA’s name.

 typing_speed -- A number; How many lines this TA can type in one action.

 experience -- A number; The difficulty of problem this TA can work on without

 needing extra help.

 students -- A list of CS111Students; the students this TA is responsible for.

 """

 super (). __init__ (name , typing_speed , experience)

 self . students = students

 self.lines_left = self.lines_per_project

 self . energy_supply = 10 ;

 def add_student (self , student):

 self . students.append(student)

 def action (self, problem_difficulty):

 """The action performed by the TA.

 """

 if self . energy_supply > 0 :

 if (self . experience >= problem_difficulty):

 self.energy_supply -= 1

 self.lines_left -= self.typing_speed

 print (f "All right! { self . name } added { self . typing_speed } lines of

 code.")

 else :

 print ("We need to do some reading")

 self . read_textbook ()

 else :

 print ("We need to take a rest")

 self . energy_supply += self.recharge_speed

 if self . lines_left <= 0 :

 print ("Let’s help some students!")

 self . lines_left = self.lines_per_project

 for student in self.students:

 self . give_help (student)

 def give_help (self, other):

 other.receive_help(self)

 print ("Thanks for letting me help you!")

 def read_textbook (self):

 self.experience += 0

 Fill in the blanks for the following Python program:

 john = CS111Student ("John" , 2)

 amy = CS111Student ("Amy" , 2)]

 ta = TA ("Will" , 15 , students=[john,amy])

 rumpelstiltskin = CS111Student ("Rumpelstiltskin" , 3 , experience= .5)

 ta . action ((a))

 ta . add_student (rumpelstiltskin)

 rumpelstiltskin . action (1)

 ta . action (3)

 rumpelstiltskin . action (1)

 john.energy_supply = 0

 (b)

 (c)

 for student in ta.students :

 (d)

 When the output is as follows:

 We need to do some reading.

 We need to ask a TA for help.

 Thanks for the help! I’ll keep trying on this problem.

 Thanks for letting me help you!

 Alright! Will added 15 lines of code!

 Let’s help some students.

 Thanks for the help! I’ll keep trying on this problem.

 Thanks for letting me help you!

 Thanks for the help! I’ll keep trying on this problem.

 Thanks for letting me help you!

 Thanks for the help! I’ll keep trying on this problem.

 Thanks for letting me help you!

 Alright! Rumpelstiltskin added 3 lines of code!

 We need to rest.

 Alright! Amy added 2 lines of code!

 John: typing speed 2 and experience 2

 Amy: typing speed 2 and experience 2

 Rumpelstiltskin: typing speed 3 and experience (e)

 (a) (1 pt) What must be true about the value in blank (a)?

 It must be a number greater than 3

 (b) (1 pt) What line of code could go in blank (b)?
 john.action(1)
 amy.action(3)
 ta.action(7)

 (c) (1 pts) What line of code could go in blank (c)?
 amy.action(3)
 amy.action(1)
 ta.action(1)

 (d) (1 pts) What line of code could go in blank (d)?

 print(student)

 (e) (1 pts) What value would be printed in space (e)?
 .5
 1.5
 2.5

 (Test continues on next page – last four questions!)

 If we want to create a class SuperStudent that inherits from CS111Student, fill in the blank with the code below:

 class SuperStudent ((e)):

 def __init__ (self , typing_speed , experience = 1 , ta, study_group=[]):

 """The SuperStudent is just like a normal CS111Student, but has a study group

 that they help every action. (You can learn a lot by helping others!!

 """

 super (). __init__ ((f) , experience , ta) ;

 self.study_group = study_group

 def action (self, problem_difficulty):

 super (). action (problem_difficulty) ;

 for student in self.study_group:

 (g) . give_help ((h))

 (f) (1 pt) What value could go in blank (e)?

 CS111Student

 (g) (0.5 pts) What value could go in blank (f)?

 typing_speed

 (h) (0.5 pts) What value could go in blank (g)?

 self

 (i) (0.5 pts) What value could go in blank (h)?

 student

 If all of these classes were in one file, programmers.py , give an import statement for the following code:

 (i)

 liam = CS111Student ("Liam" , 2)

 michael = TA ("Michael" , 15 , students=[liam])

 (j) (1 pt) What line of code could go in blank (i)?

 import programmers

