CS 61A Higher—Order FU.HCtiOIlS, Self Referenee
FaH 2021 Discussion 2: Septem]oer 8, 2021

Lambda EXpreSSions

A lambda expression evaluates to a function, called a lambda function. For example,
lambda y: x + y is alambda expression, and can be read as “a function that takes

in one parameter y and returns x + y.”

A lambda expression by itself evaluates to a function but does not bind it to a
name. Also note that the return expression of this function is not evaluated until
the lambda is called. This is similar to how defining a new function using a def

statement does not execute the function’s body until it is later called.

>>> what = lambda x : x + 5
>>> yhat
<function <lambda> at 0xf3f490>

Unlike def statements, lambda expressions can be used as an operator or an operand
to a call expression. This is because they are simply one-line expressions that
evaluate to functions. In the example below, (lambda y: y + 5) is the operator

and 4 is the operand.

>>> (lambda y: y + 5)(4)

9

>>> (lambda f, x: f(x))(lambda y: y + 1, 10)
11

Higher Order Functions

A higher order function (HOF) is a function that manipulates other functions by
taking in functions as arguments, returning a function, or both. For example, the
function compose below takes in two functions as arguments and returns a function

that is the composition of the two arguments.

def composer(funcl, func2):
"""Return a function f, such that f(x) = funcl(func2(x))."""
def f£(x):
return funci(func2(x))

return f

HOFs are powerful abstraction tools that allow us to express certain general patterns

as named concepts in our programs.

2 Higher-Order Functions, Self Reference

Q1: Make Keeper

Write a function that takes in a number n and returns a function that can take in
a single parameter cond. When we pass in some condition function cond into this
returned function, it will print out numbers from 1 to n where calling cond on that

number returns True.

def make_keeper(n):
"""Returns a function which takes one parameter cond and prints

out all integers 1..i..n where calling cond(i) returns True.

>>> def is_even(x):
Even numbers have remainder O when divided by 2.
return x % 2 ==

>>> make_keeper(5) (is_even)

2

4

nmnn

"xx* YOUR CODE HERE **x"

You can use more space on the back if you want

HOFs in Environment Diagrams

An environment diagram keeps track of all the variables that have been defined
and the values they are bound to. However, values are not necessarily only integers
and strings. Environment diagrams can model more complex programs that utilize

higher order functions.
See the web version of this resource for the environment diagram.

Lambdas are represented similarly to functions in environment diagrams, but since
they lack instrinsic names, the lambda symbol () is used instead.

The parent of any function (including lambdas) is always the frame in which the

function is defined. It is useful to include the parent in environment diagrams in

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Higher-Order Functions, Self Reference 3

order to find variables that are not defined in the current frame. In the previous
example, when we call add_two (which is really the lambda function), we need to
know what x is in order to compute x + y. Since x is not in the frame £2, we look
at the frame’s parent, which is f1. There, we find x is bound to 2.

As illustrated above, higher order functions that return a function have their return

value represented with a pointer to the function object.

Currying

One important application of HOFs is converting a function that takes multiple
arguments into a chain of functions that each take a single argument. This is
known as currying. For example, the function below converts the pow function
into its curried form:

>>> def curried_pow(x):
def h(y):
return pow(x, y)

return h

>>> curried_pow(2) (3)
8

Q2: Curry2 Diagram

Draw the environment diagram that results from executing the code below.

def curry2(h):
def f£(x):
def g(y):
return h(x, y)
return g

return f

make_adder = curry2(lambda x, y: x + y)
add_three = make_adder(3)

add_four = make_adder (4)

five = add_three(2)

Q3: Curry2 Lambda

Write curry2 as a lambda function.

"xxx YOUR CODE HERE s**x"

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Higher-Order Functions, Self Reference

SGH Reference

Self-reference refers to a particular design of HOF, where a function eventually
returns itself. In particular, a self-referencing function will not return a function
call, but rather the function object itself. As an example, take a look at the

print_all function:

def print_all(x):
print(x)

return print_all

Self-referencing functions will often employ helper functions that reference the outer

function, such as the example below, print_sums.

def print_sums(n):
print(n)
def next_sum(k):
return print_sums(n + k)

return next_sum

A call to print_sums returns next_sum. A call to next_sum will return the result
of calling print_sums which will, in turn, return another function next_sum. This

type of pattern is common in self-referencing functions.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Higher-Order Functions, Self Reference 5

Q4: Make Keeper Redux
In this question, we will build off of the make_keeper function from in Question 1.

The function make_keeper_redux is similar to make_keeper, but now the func-
tion returned by make_keeper_redux should be self-referential—i.e., the returned

function should return a function with the same behavior as make_keeper_redux.
Feel free to paste and modify your code for make_keeper below.

Hint: you only need to add one line to your make_keeper solution.

What is currently missing from make_keeper_redux?

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Higher-Order Functions, Self Reference

def make_keeper_redux(n):
"""Returns a function. This function takes one parameter <cond>
and prints out all integers 1..i..n where calling cond(i)
returns True. The returned function returns another function

with the exact same behavior.

>>> def multiple_of_4(x):
return x % 4 ==

>>> def ends_with_1(x):
return x % 10 == 1

>>> k = make_keeper_redux(11) (multiple_of_4)

4

8

>>> k = k(ends_with_1)

1

11

>>> k

<function do_keep>

Paste your code for make_keeper here!

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Higher-Order Functions, Self Reference 7

Q5: Print N

Write a function print_n that can take in an integer n and returns a repeatable
print function that can print the next n parameters. After the nth parameter, it
just prints “done”.

def print_n(n):

nnn

>>> f = print_n(2)
>>> f = f("hi")

hi

>>> f = f("hello")
hello

>>> f = £("bye")
done

>>> g = print_n(1)
>>> g("first") ("second") ("third")
first

done

done

<function inner_print>

nnn

def inner_print(x):
it _
print("done")
else:
print(x)
return

return

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Higher-Order Functions, Self Reference

Extra Practice

Feel free to reference this section as extra practice when studying for the exam in

terms of tackling more involved or challenging problems.

Q6: HOF Diagram Practice

Draw the environment diagram that results from executing the code below.

n==7
def f(x):
n=238

return x + 1

def g(x):
n=29
def h(Q):
return x + 1

return h

def f(f, x):

return f(x + n)

f =1f(g, n)
g = (lambda y: yO) (£)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Higher-Order Functions, Self Reference 9

Q7: YY Diagram
Draw the environment diagram that results from executing the code below.

Tip: Using the + operator with two strings results in the second string
being appended to the first. For example "C" + "S" concatenates the

two strings into one string "CS".

y ="y
h =y
def y(y):
h = "h"
if y == h:
return y + "i"
y = lambda y: y(h)
return lambda h: y(h)
y =y)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

10 Higher-Order Functions, Self Reference

Q8: Match Maker

Implement match_k, which takes in an integer k and returns a function that takes

in a variable x and returns True if all the digits in x that are k apart are the same.

For example, match_k(2) returns a one argument function that takes in x and

checks if digits that are 2 away in x are the same.

match_k(2) (1010) has the value of x = 1010 and digits 1, 0, 1, 0 going from left
to right. 1 == 1 and 0 == 0, so the match_k(2) (1010) results in True.

match_k(2) (2010) has the value of x = 2010 and digits 2, 0, 1, 0 going from left
to right. 2 '= 1 and 0 == 0, so the match_k(2) (2010) results in False.

Important: You may not use strings or indexing for this problem. You do not
have to use all the lines, one staff solution does not use the line directly above the

while loop.

Hint: Floor dividing by powers of 10 gets rid of the rightmost digits.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Higher-Order Functions, Self Reference 11

def match_k(k):

""" Return a function that checks if digits k apart match

>>> match_k(2) (1010)
True

>>> match_k(2) (2010)
False

>>> match_k(1) (1010)
False

>>> match_k(1) (1)

True

>>> match_k(1)(2111111111111111)
False

>>> match_k(3) (123123)
True

>>> match_k(2) (123123)

False

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

12 Higher-Order Functions, Self Reference

Q9: Three Memory

A k-memory function takes in a single input, prints whether that input was seen
exactly k function calls ago, and returns a new k-memory function. For example, a
2-memory function will display “Found” if its input was seen exactly two function
calls ago, and otherwise will display “Not found”.

Implement three_memory, which is a 3-memory function. You may assume that
the value None is never given as an input to your function, and that in the first two

function calls the function will display “Not found” for any valid inputs given.

def three_memory(n):

>>> f = three_memory('first')

>>> f = £('first')

Not found

>>> f = £f('second')

Not found

>>> f = £('third')

Not found

>>> f = f('second') # 'second' was not input three calls ago
Not found

>>> f = f('second') # 'second' was input three calls ago
Found

>>> f = £('third') # 'third' was input three calls ago
Found

>>> f = £('third') # 'third' was not input three calls ago
Not found

nnn

def f(x, y, z):

return

return

return f(None, None, n)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Higher-Order Functions, Self Reference 13

Q10: Natural Chain

For this problem, a chain_function is a higher order function that repeatedly
accepts natural numbers (positive integers). The first number that is passed into
the function that chain_function returns initializes a natural chain, which we
define as a consecutive sequence of increasing natural numbers (i.e., 1, 2, 3). A
natural chain breaks when the next input differs from the expected value of the
sequence. For example, the sequence (1, 2, 3, 5) is broken because it is missing a 4.

Implement the chain_function so that it prints out the value of the expected
number at each chain break as well as the number of chain breaks seen so far,
including the current chain break. Each time the chain breaks, the chain restarts

at the most recently input number.

For example, the sequence (1, 2, 3, 5, 6) would only print 4 and 1. We print 4

because there is a missing 4, and we print 1 because the 4 is the first number to

break the chain. The 5 broke the chain and restarted the chain, so from here on out

we expect to see numbers increasingly linearly from 5. See the doctests for more

examples. You may assume that the higher-order function is never given numbers
0.

Important: For this problem, the starter code is a suggestion. You are welcome
to add/delete/modify the starter code template, or even write your own solution

that doesn’t use the starter code at all.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

14

Higher-Order Functions, Self Reference

def

chain_function():

wn

>>> tester = chain_function()

>>> x = tester(1)(2)(4)(5) # Expected 3 but got 4, so print 3. 1
st chain break, so print 1 too.

31

>>> x = x(2) # 6 should've followed 5 from above, so print 6. 2
nd chain break, so print 2

6 2

>>> x = x(8) # The chain restarted at 2 from the previous line,
but we got 8. 3rd chain break.

33

>>> x = x(3)(4) (5) # Chain restarted at 8 in the previous line,
but we got 3 instead. 4th break

9 4

>>> x = x(9) # Similar logic to the above line

6 5

>>> x = x(10) # Nothing is printed because 10 follows 9.

>>> y = tester(4)(5)(8) # New chain, starting at 4, break at 6,

first chain break
61
>>> y = y(2)(3)(10) # Chain expected 9 next, and 4 after 10.
Break 2 and 3.
9 2
4 3
def g(x, y):

def h(n):

if

return

else:

return __

return _

You can use more space on the back if you want

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Lambda Expressions
	Higher Order Functions
	Q1: Make Keeper
	HOFs in Environment Diagrams
	Currying
	Q2: Curry2 Diagram
	Q3: Curry2 Lambda

	Self Reference
	Q4: Make Keeper Redux
	Q5: Print N

	Extra Practice
	Q6: HOF Diagram Practice
	Q7: YY Diagram
	Q8: Match Maker
	Q9: Three Memory
	Q10: Natural Chain

