CS 61A Interpreters
Faﬂ 2021 Discussion 11: November 10, 2021

Calculator

An interpreter is a program that understands other programs. Today, we will ex-
plore how to build an interpreter for Calculator, a simple language that uses a

subset of Scheme syntax.

The Calculator language includes only the four basic arithmetic operations: +, -,
x, and /. These operations can be nested and can take any numbers of arguments.
A few examples of calculator expressions and their corresponding values are shown

below.

calc> (+ 2 2)
4

calc> (- b5)
-5

cale> (x (+ 1 2) (+ 2 3))
15

The reader component of an interpreter parses input strings and represents them
as data structures in the implementing language. In this case, we need to represent
Calculator expressions as Python objects. To represent numbers, we can just use
Python numbers. To represent the names of the arithmetic procedures, we can use

Python strings (e.g. '+').

To represent Scheme lists in Python, we will use the Pair class. A Pair instance
holds exactly two elements. Accordingly, the Pair constructor takes in two argu-
ments, and to make a list we must nest calls to the constructor and pass in nil as
the second element of the last pair. Note that in the Python code, nil is bound to
a special user-defined object that represents an empty list, whereas nil in Scheme

is actually an empty list.

>>> Pair('+', Pair(2, Pair(3, nil)))
Pair('+', Pair(2, Pair(3, nil)))

Each Pair instance has two instance attributes: first and rest, which are bound

to the first and second elements of the pair respectively.

2 Interpreters

>>>
>>>
I+I

>>>

p = Pair('+', Pair(2, Pair(3, nil)))
p.-first

p.rest

Pair(2, Pair(3, nil))

>>>
2

p.rest.first

Pair is very similar to Link, the class we developed for representing linked lists

— they have the same attribute names first and rest and are represented very

similarly. Here’s an implementation of what we described:

class Pair:

"""Represents the built-in pair data structure in Scheme."""
def __init__(self, first, rest):
self.first = first
if not scheme_valid_cdrp(rest):
raise SchemeError("cdr can only be a pair, nil, or a
promise but was {}".format(rest))

self.rest = rest

def map(self, fn):
"""Maps fn to every element in a list, returning a new

Pair.

>>> Pair(1, Pair(2, Pair(3, nil))) .map(lambda x: x * x)

Pair(1, Pair(4, Pair(9, nil)))

nuan

assert isinstance(self.rest, Pair) or self.rest is nil, \
"rest element in pair must be another pair or nil"

return Pair(fn(self.first), self.rest.map(fn))

def __repr__(self):
return 'Pair({}, {})'.format(self.first, self.rest)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Interpreters

3

clas

nil

s nil:
"""Represents the special empty pair nil in Scheme."""
def map(self, fn):
return nil
def __getitem__(self, i):
raise IndexError('Index out of range')
def __repr__(self):

return 'nil'

= nil() # this hides the nil class *foreverx*

Note:

This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Interpreters

Questions
Q1: Using Pair

Answer the following questions about a Pair instance representing the Calculator
expression (+ (- 2 4) 6 8).

Write out the Python expression that returns a Pair representing the given expres-

sion:
What is the operator of the call expression?

If the Pair you constructed in the previous part was bound to the name p, how
would you retrieve the operator?

What are the operands of the call expression?

If the Pair you constructed was bound to the name p, how would you retrieve a
list containing all of the operands?

How would you retrieve only the first operand?

Q2: New Procedure

Suppose we want to add the // operation to our Calculator interpreter. Recall from
Python that // is the floor division operation, so we are looking to add a built-in
procedure // in our interpreter such that (// dividend divisor) returns dividend
// divisor. Similarly we handle multiple inputs as illustrated in the following ex-
ample (// dividend divisorl divisor2 divisor3) evaluates to (((dividend //
divisorl) // divisor2) // divisor3). For this problem you can assume you are always
given at least 1 divisor. Also for this question do you need to call calc_eval inside
floor_div? Why or why not?

calc> (// 1 1)

1

cale> (// 5 2)

2

cale> (// 28 (+ 1 1) 1)
14

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Interpreters 5

def calc_eval(exp):
if isinstance(exp, Pair): # Call expressions
return calc_apply(calc_eval(exp.first), exp.rest.map(
calc_eval))
elif exp in OPERATORS: # Names
return OPERATORS [exp]
else: # Numbers
return exp
def floor_div(expr):
"xxx YOUR CODE HERE *x*x"

Assume OPERATORS['//'] = floor_div is added for you in the code

You can use more space on the back if you want

Q3: New Form

Suppose we want to add handling for comparison operators >, <, and = as well as
and expressions to our Calculator interpreter. These should work the same way
they do in Scheme.

calc> (and (=1 1) 3)

3

calc> (and (+ 1 0) (< 10) (/10))
#f

i. Are we able to handle expressions containing the comparison operators (such
as <, >, or =) with the existing implementation of calc_eval? Why or why
not?

ii. Are we able to handle and expressions with the existing implementation of
calc_eval? Why or why not?

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Interpreters

iii.

Hint: Think about the rules of evaluation we’ve implemented in
calc_eval. Is anything different about and?

Now, complete the implementation below to handle and expressions. You
may assume the conditional operators (e.g. <, >, =, etc) have already been
implemented for you.

def

def

calc_eval(exp):
if isinstance(exp, Pair):
if : # and expressions
return eval_and(exp.rest)
else: # Call expressions
return calc_apply(calc_eval(exp.first), exp.rest.map(
calc_eval))
elif exp in OPERATORS: # Names
return OPERATORS [exp]
else: # Numbers

return exp

eval_and(operands) :
"xxx YOUR CODE HERE *x*x"

You can use more space on the back if you want

Q4:

Saving Values

In the last few questions we went through a lot of effort to add operations so we

can do most arithmetic operations easily. However it’s a real shame we can’t store

these values. So for this question let’s implement a define special form that saves

values to variable names. This should work like variable assignment in Scheme;

this means that you should expect inputs of the form(define <variable_name>

<value>) and these inputs should return the symbol corresponding to the variable

name.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Interpreters 7

calc> (define a 1)
a

calc> a

1

This is a more involved change. Here are the 4 steps involved: 1. Add a bindings
dictionary that will store the names and correspondings values of variables as
key-value pairs of the dictionary. 2. Identify when the define form is given to
calc_eval. 3. Allow variables to be looked up in calc_eval. 4. Write the
function eval_define which should actually handle adding names and values to

the bindings dictionary.

We’ve done step 1 for you. Now you’ll do the remaining steps in the code below.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

8 Interpreters

bindings = {}
def calc_eval(exp):
if isinstance(exp, Pair):
it _ : # and expressions[paste your
answer from the earlier]
return eval_and(exp.rest)
elif : # define expressions

return eval_define(exp.rest)

else: # Call expressions
return calc_apply(calc_eval(exp.first), exp.rest.map(
calc_eval))

"xx*x YOUR CODE HERE *xx"

elif : # Looking up variables

elif exp in OPERATORS: # Looking up procedures
return OPERATORS [exp]
else: # Numbers

return exp

def eval_define(expr):
"sx* YOUR CODE HERE **x"

You can use more space on the back if you want

Q5: Counting Eval and Apply

How many calls to calc_eval and calc_apply would it take to evaluate each of
the following Calculator expressions?

scm> (+ 1 2)

For this particular prompt please list out the inputs to calc_eval and calc_apply.
scm> (+ 2 4 6 8)

scm> (+ 2 (x 4 (- 6 8)))

scm> (and 1 (+ 1 0) 0)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Interpreters 9

Q6: From Pair to Calculator

Write out the Calculator expression with proper syntax that corresponds to the

following Pair constructor calls.

>>> Pair('+', Pair(1, Pair(2, Pair(3, Pair(4, nil)))))

>>> Pair('+', Pair(1, Pair(Pair('x', Pair(2, Pair(3, nil))), nil)))

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Calculator
	Questions
	Q1: Using Pair
	Q2: New Procedure
	Q3: New Form
	Q4: Saving Values
	Q5: Counting Eval and Apply
	Q6: From Pair to Calculator

