Homework 3: Recursion, Tree Recursion
Files: hw03.zip
Instructions
Download hw03.zip. Inside the archive, you will find a file called hw03.py
, along with a copy of the ok
autograder.
Submission: When you are done, zip up your assignment and submit it through Gradescope. See Lab 0 for more instructions on submitting assignments.
Using Ok: If you have any questions about using Ok, please refer to this guide.
Readings: You might find the following references useful:
Grading: Homework is graded based on correctness. Each incorrect problem will decrease the total score by one point. This homework is out of 4 points.
Required Questions
Q1: Num eights
Write a recursive function num_eights
that takes a positive integer pos
and returns the number of times the digit 8 appears in pos
.
Important: Use recursion; the tests will fail if you use any assignment statements. (You can however use function definitions if you so wish.)
def num_eights(pos):
"""Returns the number of times 8 appears as a digit of pos.
>>> num_eights(3)
0
>>> num_eights(8)
1
>>> num_eights(88888888)
8
>>> num_eights(2638)
1
>>> num_eights(86380)
2
>>> num_eights(12345)
0
>>> from construct_check import check
>>> # ban all assignment statements
>>> check(HW_SOURCE_FILE, 'num_eights',
... ['Assign', 'AnnAssign', 'AugAssign', 'NamedExpr'])
True
"""
"*** YOUR CODE HERE ***"
Use Ok to test your code:
python3 ok -q num_eights
Q2: Ping-pong
The ping-pong sequence counts up starting from 1 and is always either counting up or counting down. At element k
, the direction switches if k
is a multiple of 8 or contains the digit 8. The first 30 elements of the ping-pong sequence are listed below, with direction swaps marked using brackets at the 8th, 16th, 18th, 24th, and 28th elements:
Index | 1 | 2 | 3 | 4 | 5 | 6 | 7 | [8] | 9 | 10 | 11 | 12 | 13 | 14 | 15 | [16] | 17 | [18] | 19 | 20 | 21 | 22 | 23 | [24] | 25 | 26 | 27 | [28] | 29 | 30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PingPong Value | 1 | 2 | 3 | 4 | 5 | 6 | 7 | [8] | 7 | 6 | 5 | 4 | 3 | 2 | 1 | [0] | 1 | [2] | 1 | 0 | -1 | -2 | -3 | [-4] | -3 | -2 | -1 | [0] | -1 | -2 |
Implement a function pingpong
that returns the nth element of the
ping-pong sequence without using any assignment statements. (You are
allowed to use function definitions.)
You may use the function num_eights
, which you defined in the previous
question.
Important: Use recursion; the tests will fail if you use any assignment statements. (You can however use function definitions if you so wish.)
Hint: If you're stuck, first try implementing
pingpong
using assignment statements and awhile
statement. Then, to convert this into a recursive solution, write a helper function that has a parameter for each variable that changes values in the body of the while loop.
def pingpong(n):
"""Return the nth element of the ping-pong sequence.
>>> pingpong(8)
8
>>> pingpong(10)
6
>>> pingpong(15)
1
>>> pingpong(21)
-1
>>> pingpong(22)
-2
>>> pingpong(30)
-2
>>> pingpong(68)
0
>>> pingpong(69)
-1
>>> pingpong(80)
0
>>> pingpong(81)
1
>>> pingpong(82)
0
>>> pingpong(100)
-6
>>> from construct_check import check
>>> # ban assignment statements
>>> check(HW_SOURCE_FILE, 'pingpong',
... ['Assign', 'AnnAssign', 'AugAssign', 'NamedExpr'])
True
"""
"*** YOUR CODE HERE ***"
Use Ok to test your code:
python3 ok -q pingpong
Q3: Missing Digits
Write the recursive function missing_digits
that takes a number n
that is sorted in non-decreasing order (for example, 12289
is valid
but 15362
and 98764
are not). It returns the number of missing
digits in n
. A missing digit is a number between the first and last
digit of n
of a that is not in n
.
Important: Use recursion; the tests will fail if you use any loops.
def missing_digits(n):
"""Given a number a that is in sorted, non-decreasing order,
return the number of missing digits in n. A missing digit is
a number between the first and last digit of a that is not in n.
>>> missing_digits(1248) # 3, 5, 6, 7
4
>>> missing_digits(19) # 2, 3, 4, 5, 6, 7, 8
7
>>> missing_digits(1122) # No missing numbers
0
>>> missing_digits(123456) # No missing numbers
0
>>> missing_digits(3558) # 4, 6, 7
3
>>> missing_digits(35578) # 4, 6
2
>>> missing_digits(12456) # 3
1
>>> missing_digits(16789) # 2, 3, 4, 5
4
>>> missing_digits(4) # No missing numbers between 4 and 4
0
>>> from construct_check import check
>>> # ban while or for loops
>>> check(HW_SOURCE_FILE, 'missing_digits', ['While', 'For'])
True
"""
"*** YOUR CODE HERE ***"
Use Ok to test your code:
python3 ok -q missing_digits
Q4: Count coins
Given a positive integer change
, a set of coins makes change for
change
if the sum of the values of the coins is change
. Here we will
use standard US Coin values: 1, 5, 10, 25. For example, the following
sets make change for 15
:
- 15 1-cent coins
- 10 1-cent, 1 5-cent coins
- 5 1-cent, 2 5-cent coins
- 5 1-cent, 1 10-cent coins
- 3 5-cent coins
- 1 5-cent, 1 10-cent coin
Thus, there are 6 ways to make change for 15
. Write a recursive
function count_coins
that takes a positive integer change
and
returns the number of ways to make change for change
using coins.
You can use either of the functions given to you:
ascending_coin
will return the next larger coin denomination from the input, i.e.ascending_coin(5)
is10
.descending_coin
will return the next smaller coin denomination from the input, i.e.descending_coin(5)
is1
.
There are two main ways in which you can approach this problem. One way
uses ascending_coin
, and another uses descending_coin
.
Important: Use recursion; the tests will fail if you use loops.
Hint: Refer the implementation of
count_partitions
for an example of how to count the ways to sum up to a final value with smaller parts. If you need to keep track of more than one value across recursive calls, consider writing a helper function.
def ascending_coin(coin):
"""Returns the next ascending coin in order.
>>> ascending_coin(1)
5
>>> ascending_coin(5)
10
>>> ascending_coin(10)
25
>>> ascending_coin(2) # Other values return None
"""
if coin == 1:
return 5
elif coin == 5:
return 10
elif coin == 10:
return 25
def descending_coin(coin):
"""Returns the next descending coin in order.
>>> descending_coin(25)
10
>>> descending_coin(10)
5
>>> descending_coin(5)
1
>>> descending_coin(2) # Other values return None
"""
if coin == 25:
return 10
elif coin == 10:
return 5
elif coin == 5:
return 1
def count_coins(change):
"""Return the number of ways to make change using coins of value of 1, 5, 10, 25.
>>> count_coins(15)
6
>>> count_coins(10)
4
>>> count_coins(20)
9
>>> count_coins(100) # How many ways to make change for a dollar?
242
>>> count_coins(200)
1463
>>> from construct_check import check
>>> # ban iteration
>>> check(HW_SOURCE_FILE, 'count_coins', ['While', 'For'])
True
"""
"*** YOUR CODE HERE ***"
Use Ok to test your code:
python3 ok -q count_coins
Submit
Submissions will be in Canvas.
It is highly recommended that you test your code before you submit it. To run all of the tests for the required questions, type:
python3 ok
Just for fun Questions
These questions are out of scope for 111. You can try them if you want an extra challenge, but they're just puzzles that are not required or recommended at all. Almost all students will skip them, and that's fine.
Q5: Towers of Hanoi
A classic puzzle called the Towers of Hanoi is a game that consists of
three rods, and a number of disks of different sizes which can slide
onto any rod. The puzzle starts with n
disks in a neat stack in
ascending order of size on a start
rod, the smallest at the top,
forming a conical shape. {.img-responsive
.center-block} The objective of the puzzle is to move the entire stack
to an end
rod, obeying the following rules:
- Only one disk may be moved at a time.
- Each move consists of taking the top (smallest) disk from one of the rods and sliding it onto another rod, on top of the other disks that may already be present on that rod.
- No disk may be placed on top of a smaller disk.
Complete the definition of move_stack
, which prints out the steps
required to move n
disks from the start
rod to the end
rod without
violating the rules. The provided print_move
function will print out
the step to move a single disk from the given origin
to the given
destination
.
Hint: Draw out a few games with various
n
on a piece of paper and try to find a pattern of disk movements that applies to anyn
. In your solution, take the recursive leap of faith whenever you need to move any amount of disks less thann
from one rod to another. If you need more help, see the following hints.
Hint 2
The strategy used in Towers of Hanoi is to move all but the bottom disc to the second peg, then moving the bottom disc to the third peg, then moving all but the second disc from the second to the third peg.
Hint 3
One thing you don't need to worry about is collecting all the steps.
print
effectively "collects" all the results in the terminal as long
as you make sure that the moves are printed in order.
def print_move(origin, destination):
"""Print instructions to move a disk."""
print("Move the top disk from rod", origin, "to rod", destination)
def move_stack(n, start, end):
"""Print the moves required to move n disks on the start pole to the end
pole without violating the rules of Towers of Hanoi.
n -- number of disks
start -- a pole position, either 1, 2, or 3
end -- a pole position, either 1, 2, or 3
There are exactly three poles, and start and end must be different. Assume
that the start pole has at least n disks of increasing size, and the end
pole is either empty or has a top disk larger than the top n start disks.
>>> move_stack(1, 1, 3)
Move the top disk from rod 1 to rod 3
>>> move_stack(2, 1, 3)
Move the top disk from rod 1 to rod 2
Move the top disk from rod 1 to rod 3
Move the top disk from rod 2 to rod 3
>>> move_stack(3, 1, 3)
Move the top disk from rod 1 to rod 3
Move the top disk from rod 1 to rod 2
Move the top disk from rod 3 to rod 2
Move the top disk from rod 1 to rod 3
Move the top disk from rod 2 to rod 1
Move the top disk from rod 2 to rod 3
Move the top disk from rod 1 to rod 3
"""
assert 1 <= start <= 3 and 1 <= end <= 3 and start != end, "Bad start/end"
"*** YOUR CODE HERE ***"
Use Ok to test your code:
python3 ok -q move_stack
Q6: Anonymous factorial
This question demonstrates that it's possible to write recursive functions without assigning them a name in the global frame.
The recursive factorial function can be written as a single expression by using a conditional expression.
>>> fact = lambda n: 1 if n == 1 else mul(n, fact(sub(n, 1)))
>>> fact(5)
120
However, this implementation relies on the fact (no pun intended) that
fact
has a name, to which we refer in the body of fact
. To write a
recursive function, we have always given it a name using a def
or
assignment statement so that we can refer to the function within its own
body. In this question, your job is to define fact
recursively without
giving it a name!
Write an expression that computes n
factorial using only call
expressions, conditional expressions, and lambda
expressions (no
assignment or def
statements).
Note: You are not allowed to use
make_anonymous_factorial
in your return expression.
The sub
and mul
functions from the operator
module are the only
built-in functions required to solve this problem.
from operator import sub, mul
def make_anonymous_factorial():
"""Return the value of an expression that computes factorial.
>>> make_anonymous_factorial()(5)
120
>>> from construct_check import check
>>> # ban any assignments or recursion
>>> check(HW_SOURCE_FILE, 'make_anonymous_factorial',
... ['Assign', 'AnnAssign', 'AugAssign', 'NamedExpr', 'FunctionDef', 'Recursion'])
True
"""
return 'YOUR_EXPRESSION_HERE'
Use Ok to test your code:
python3 ok -q make_anonymous_factorial