Homework 6: Object Oriented Programming, Linked Lists
Files: hw06.zip
Instructions
Download hw06.zip. Inside the archive, you will find a file
called hw06.py
, along with a copy of the ok
autograder.
Submission: When you are done, zip up your assignment and submit it through Gradescope. See Lab 0 for more instructions on submitting assignments.
Using Ok: If you have any questions about using Ok, please refer to this guide.
Readings: You might find the following references useful:
Grading: Homework is graded based on correctness. Each incorrect problem will decrease the total score by one point. There is a homework recovery policy as stated in the syllabus. This homework is out of 2 points.
Required Questions
OOP
Q1: Vending Machine
In this question you'll create a vending machine that only outputs a single product and provides change when needed.
Create a class called VendingMachine
that represents a vending machine
for some product. A VendingMachine
object returns strings describing
its interactions. Remember to match exactly the strings in the
doctests -- including punctuation and spacing!
Fill in the VendingMachine
class, adding attributes and methods as
appropriate, such that its behavior matches the following doctests:
class VendingMachine:
"""A vending machine that vends some product for some price.
>>> v = VendingMachine('candy', 10)
>>> v.vend()
'Nothing left to vend. Please restock.'
>>> v.add_funds(15)
'Nothing left to vend. Please restock. Here is your $15.'
>>> v.restock(2)
'Current candy stock: 2'
>>> v.vend()
'You must add $10 more funds.'
>>> v.add_funds(7)
'Current balance: $7'
>>> v.vend()
'You must add $3 more funds.'
>>> v.add_funds(5)
'Current balance: $12'
>>> v.vend()
'Here is your candy and $2 change.'
>>> v.add_funds(10)
'Current balance: $10'
>>> v.vend()
'Here is your candy.'
>>> v.add_funds(15)
'Nothing left to vend. Please restock. Here is your $15.'
>>> w = VendingMachine('soda', 2)
>>> w.restock(3)
'Current soda stock: 3'
>>> w.restock(3)
'Current soda stock: 6'
>>> w.add_funds(2)
'Current balance: $2'
>>> w.vend()
'Here is your soda.'
"""
"*** YOUR CODE HERE ***"
You may find Python's formatted string literals, or f-strings useful. A quick example:
>>> feeling = 'love' >>> course = '61A!' >>> f'I {feeling} {course}' 'I love 61A!'
Use Ok to test your code:
python3 ok -q VendingMachine
If you're curious about alternate methods of string formatting, you can also check out an older method of Python string formatting. A quick example:
>>> ten, twenty, thirty = 10, 'twenty', [30] >>> '{0} plus {1} is {2}'.format(ten, twenty, thirty) '10 plus twenty is [30]'
Q2: Mint
A mint is a place where coins are made. In this question, you'll
implement a Mint
class that can output a Coin
with the correct year
and worth.
- Each
Mint
instance has ayear
stamp. Theupdate
method sets theyear
stamp to thepresent_year
class attribute of theMint
class. - The
create
method takes a subclass ofCoin
and returns an instance of that class stamped with themint
's year (which may be different fromMint.present_year
if it has not been updated.) - A
Coin
'sworth
method returns thecents
value of the coin plus one extra cent for each year of age beyond 50. A coin's age can be determined by subtracting the coin's year from thepresent_year
class attribute of theMint
class.
class Mint:
"""A mint creates coins by stamping on years.
The update method sets the mint's stamp to Mint.present_year.
>>> mint = Mint()
>>> mint.year
2021
>>> dime = mint.create(Dime)
>>> dime.year
2021
>>> Mint.present_year = 2101 # Time passes
>>> nickel = mint.create(Nickel)
>>> nickel.year # The mint has not updated its stamp yet
2021
>>> nickel.worth() # 5 cents + (80 - 50 years)
35
>>> mint.update() # The mint's year is updated to 2101
>>> Mint.present_year = 2176 # More time passes
>>> mint.create(Dime).worth() # 10 cents + (75 - 50 years)
35
>>> Mint().create(Dime).worth() # A new mint has the current year
10
>>> dime.worth() # 10 cents + (155 - 50 years)
115
>>> Dime.cents = 20 # Upgrade all dimes!
>>> dime.worth() # 20 cents + (155 - 50 years)
125
"""
present_year = 2021
def __init__(self):
self.update()
def create(self, kind):
"*** YOUR CODE HERE ***"
def update(self):
"*** YOUR CODE HERE ***"
class Coin:
def __init__(self, year):
self.year = year
def worth(self):
"*** YOUR CODE HERE ***"
class Nickel(Coin):
cents = 5
class Dime(Coin):
cents = 10
Use Ok to test your code:
python3 ok -q Mint
Linked Lists
Q3: Store Digits
Write a function store_digits
that takes in an integer n
and returns
a linked list where each element of the list is a digit of n
.
Important: Do not use any string manipulation functions like
str
andreversed
def store_digits(n):
"""Stores the digits of a positive number n in a linked list.
>>> s = store_digits(1)
>>> s
Link(1)
>>> store_digits(2345)
Link(2, Link(3, Link(4, Link(5))))
>>> store_digits(876)
Link(8, Link(7, Link(6)))
>>> # a check for restricted functions
>>> import inspect, re
>>> cleaned = re.sub(r"#.*\\n", '', re.sub(r'"{3}[\s\S]*?"{3}', '', inspect.getsource(store_digits)))
>>> print("Do not use str or reversed!") if any([r in cleaned for r in ["str", "reversed"]]) else None
>>> link1 = Link(3, Link(Link(4), Link(5, Link(6))))
"""
"*** YOUR CODE HERE ***"
Use Ok to test your code:
python3 ok -q store_digits
Q4: Mutable Mapping
Implement deep_map_mut(fn, link)
, which applies a function fn
onto
all elements in the given linked list link
. If an element is itself a
linked list, apply fn
to each of its elements, and so on.
Your implementation should mutate the original linked list. Do not create any new linked lists.
Hint: The built-in
isinstance
function may be useful.>>> s = Link(1, Link(2, Link(3, Link(4)))) >>> isinstance(s, Link) True >>> isinstance(s, int) False
def deep_map_mut(fn, link):
"""Mutates a deep link by replacing each item found with the
result of calling fn on the item. Does NOT create new Links (so
no use of Link's constructor)
Does not return the modified Link object.
>>> link1 = Link(3, Link(Link(4), Link(5, Link(6))))
>>> # Disallow the use of making new Links before calling deep_map_mut
>>> Link.__init__, hold = lambda *args: print("Do not create any new Links."), Link.__init__
>>> try:
... deep_map_mut(lambda x: x * x, link1)
... finally:
... Link.__init__ = hold
>>> print(link1)
<9 <16> 25 36>
"""
"*** YOUR CODE HERE ***"
Use Ok to test your code:
python3 ok -q deep_map_mut
Q5: Two List
Implement a function two_list
that takes in two lists and returns a
linked list. The first list contains the values that we want to put in
the linked list, and the second list contains the number of each
corresponding value. Assume both lists are the same size and have a
length of 1 or greater. Assume all elements in the second list are
greater than 0.
def two_list(vals, amounts):
"""
Returns a linked list according to the two lists that were passed in. Assume
vals and amounts are the same size. Elements in vals represent the value, and the
corresponding element in amounts represents the number of this value desired in the
final linked list. Assume all elements in amounts are greater than 0. Assume both
lists have at least one element.
>>> a = [1, 3, 2]
>>> b = [1, 1, 1]
>>> c = two_list(a, b)
>>> c
Link(1, Link(3, Link(2)))
>>> a = [1, 3, 2]
>>> b = [2, 2, 1]
>>> c = two_list(a, b)
>>> c
Link(1, Link(1, Link(3, Link(3, Link(2)))))
"""
"*** YOUR CODE HERE ***"
Use Ok to test your code:
python3 ok -q two_list
Extra Questions
Q6: Next Virahanka Fibonacci Object
Implement the next
method of the VirFib
class. For this class, the
value
attribute is a Fibonacci number. The next
method returns a
VirFib
instance whose value
is the next Fibonacci number. The next
method should take only constant time.
Note that in the doctests, nothing is being printed out. Rather, each
call to .next()
returns a VirFib
instance. The way each VirFib
instance is displayed is determined by the return value of its
__repr__
method.
Hint: Keep track of the previous number by setting a new instance attribute inside
next
. You can create new instance attributes for objects at any point, even outside the__init__
method.
class VirFib():
"""A Virahanka Fibonacci number.
>>> start = VirFib()
>>> start
VirFib object, value 0
>>> start.next()
VirFib object, value 1
>>> start.next().next()
VirFib object, value 1
>>> start.next().next().next()
VirFib object, value 2
>>> start.next().next().next().next()
VirFib object, value 3
>>> start.next().next().next().next().next()
VirFib object, value 5
>>> start.next().next().next().next().next().next()
VirFib object, value 8
>>> start.next().next().next().next().next().next() # Ensure start isn't changed
VirFib object, value 8
"""
def __init__(self, value=0):
self.value = value
def next(self):
"*** YOUR CODE HERE ***"
def __repr__(self):
return "VirFib object, value " + str(self.value)
Use Ok to test your code:
python3 ok -q VirFib
Q7: Is BST
Write a function is_bst
, which takes a Tree t
and returns True
if,
and only if, t
is a valid binary search tree, which means that:
- Each node has at most two children (a leaf is automatically a valid binary search tree)
- The children are valid binary search trees
- For every node, the entries in that node's left child are less than or equal to the label of the node
- For every node, the entries in that node's right child are greater than the label of the node
An example of a BST is:
Note that, if a node has only one child, that child could be considered either the left or right child. You should take this into consideration.
Hint: It may be helpful to write helper functions bst_min
and
bst_max
that return the minimum and maximum, respectively, of a Tree
if it is a valid binary search tree.
def is_bst(t):
"""Returns True if the Tree t has the structure of a valid BST.
>>> t1 = Tree(6, [Tree(2, [Tree(1), Tree(4)]), Tree(7, [Tree(7), Tree(8)])])
>>> is_bst(t1)
True
>>> t2 = Tree(8, [Tree(2, [Tree(9), Tree(1)]), Tree(3, [Tree(6)]), Tree(5)])
>>> is_bst(t2)
False
>>> t3 = Tree(6, [Tree(2, [Tree(4), Tree(1)]), Tree(7, [Tree(7), Tree(8)])])
>>> is_bst(t3)
False
>>> t4 = Tree(1, [Tree(2, [Tree(3, [Tree(4)])])])
>>> is_bst(t4)
True
>>> t5 = Tree(1, [Tree(0, [Tree(-1, [Tree(-2)])])])
>>> is_bst(t5)
True
>>> t6 = Tree(1, [Tree(4, [Tree(2, [Tree(3)])])])
>>> is_bst(t6)
True
>>> t7 = Tree(2, [Tree(1, [Tree(5)]), Tree(4)])
>>> is_bst(t7)
False
"""
"*** YOUR CODE HERE ***"
Use Ok to test your code:
python3 ok -q is_bst