Project 1: The Game of Hog
Files: hog.zip
I know! I’ll use my
Higher-order functions to
Order higher rolls.
Introduction
Important submission note: For full credit:
- Submit with Phase 1 complete by Wednesday 10 May (worth 1 pt).
- Submit with all phases complete by Saturday 13 May.
Although Phase 1 is due only a few days before the rest of the project, you should not put off completing Phase 1. We recommend starting and finishing Phase 1 as soon as possible.
Try to attempt the problems in order, as some later problems will depend on earlier problems in their implementation and therefore also when running
ok
tests.The entire project can be completed with a partner.
You can get 1 bonus point by submitting the entire project by Friday 12 May.
In this project, you will develop a simulator and multiple strategies for the dice game Hog. You will need to use control statements and higher-order functions together, as described in Sections 1.2 through 1.6 of Composing Programs, the online textbook.
When students in the past have tried to implement the functions without thoroughly reading the problem description, they’ve often run into issues. 😱 Read each description thoroughly before starting to code.
Rules
In Hog, two players alternate turns trying to be the first to end a turn with at least 100 total points. On each turn, the current player chooses some number of dice to roll, up to 10. That player’s score for the turn is the sum of the dice outcomes. However, a player who rolls too many dice risks:
-
Sow Sad. If any of the dice outcomes is a 1, the current player’s score for the turn is
1
.Examples
- Example 1: The current player rolls 7 dice, 5 of which are 1’s.
They score
1
point for the turn. - Example 2: The current player rolls 4 dice, all of which are 3’s.
Since Sow Sad did not occur, they score
12
points for the turn.
- Example 1: The current player rolls 7 dice, 5 of which are 1’s.
They score
In a normal game of Hog, those are all the rules. To spice up the game, we’ll include some special rules:
-
Picky Piggy. A player who chooses to roll zero dice scores the
n
th digit of the decimal expansion of 1/7 (0.14285714…), wheren
is the opponent’s score. As a special case, ifn
is 0, the player scores 7 points.Examples
- Example 1: The current player rolls zero dice and the opponent has
a score of 3. The 3rd digit of the decimal expansion of 1/7 is 2:
0.14[2]85714285714285
, The current player will receive2
points. - Example 2: The current player rolls zero dice and the opponent has
a score of 14. The 14th digit of the decimal expansion of 1/7 is 4:
0.1428571428571[4]285
, so the current player will receive4
points. - Example 3: The current player rolls zero dice and the opponent has
a score of 0. The current player will receive
7
points.
- Example 1: The current player rolls zero dice and the opponent has
a score of 3. The 3rd digit of the decimal expansion of 1/7 is 2:
-
Hog Pile. After points for the turn are added to the current player’s score, if the players’ scores are the same, the current player’s score doubles.
Examples
- Both players start out at 0. (0, 0)
- Player 0 rolls 2 dice and gets
5
points. (5, 0) - Player 1 rolls 1 dice and gets
5
points. Player 1’s score doubles. (5, 10) - Player 0 rolls 2 dice and gets
6
points. (11, 10) - Player 1 rolls 8 dice and gets
1
points. Player 1’s score doubles. (11, 22)
Download starter files
To get started, download all of the project code as a zip
archive. Below is a list of all the files you will see in the
archive once unzipped. For the project, you’ll only be making changes to
hog.py
.
hog.py
: A starter implementation of Hogdice.py
: Functions for rolling dicehog_gui.py
: A graphical user interface (GUI) for Hog (updated)ucb.py
: Utility functions for CS 111ok
: CS 111 autogradertests
: A directory of tests used byok
gui_files
: A directory of various things used by the web GUIcalc.py
: A file you can use to approximately test your final strategy (in progress)
You may notice some files other than the ones listed above too—those are
needed for making the autograder and portions of the GUI work. Please do
not modify any files other than hog.py
.
Logistics
The project is worth 25 points. 22 points are assigned for correctness, 2 points for composition, and 1 point for submitting Phase 1 by the checkpoint date.
Important points update: The points for the project have been updated to more accurately reflect the question weights including points for project composition.
You will turn in the following files:
hog.py
You do not need to modify or turn in any other files to complete the project.
For the functions that we ask you to complete, there may be some initial code that we provide. If you would rather not use that code, feel free to delete it and start from scratch. You may also add new function definitions as you see fit.
However, please do not modify any other functions. Doing so may result in your code failing our autograder tests. Also, please do not change any function signatures (names, argument order, or number of arguments).
Throughout this project, you should be testing the correctness of your code. It is good practice to test often, so that it is easy to isolate any problems. However, you should not be testing too often, to allow yourself time to think through problems.
We have provided an autograder called ok
to help you with testing
your code and tracking your progress.
If you want to test your code interactively, you can run
python3 ok -q [question number] -i
with the appropriate question number (e.g. 01
) inserted. This will run
the tests for that question until the first one you failed, then give
you a chance to test the functions you wrote interactively.
You can also use the debugging print feature in OK by writing
print("DEBUG:", x)
which will produce an output in your terminal without causing OK tests to fail with extra output.
Graphical User Interface
A graphical user interface (GUI, for short) is provided for you. At
the moment, it doesn’t work because you haven’t implemented the game
logic. Once you complete the play
function, you will be able to play a
fully interactive version of Hog!
Note: The GUI has been updated. See the announcement at the top of the page for instructions.
Once you’ve done that, you can run the GUI from your terminal:
python3 hog_gui.py
Phase 1: Simulator
In the first phase, you will develop a simulator for the game of Hog.
Problem 0 (0 pt)
The dice.py
file represents dice using non-pure zero-argument
functions. These functions are non-pure because they may have different
return values each time they are called. The documentation of dice.py
describes the two different types of dice used in the project:
- A fair dice produces each possible outcome with equal
probability. Two fair dice are already defined,
four_sided
andsix_sided
, and are generated by themake_fair_dice
function. - A test dice is deterministic: it always cycles through a fixed
sequence of values that are passed as arguments. Test dice are
generated by the
make_test_dice
function.
Before writing any code, read over the dice.py
file and check your
understanding by unlocking the following tests.
python3 ok -q 00 -u
This should display a prompt that looks like this:
=====================================================================
Assignment: Project 1: Hog
Ok, version v1.18.2
=====================================================================
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Unlocking tests
At each "? ", type what you would expect the output to be.
Type exit() to quit
---------------------------------------------------------------------
Question 0 > Suite 1 > Case 1
(cases remaining: 1)
>>> test_dice = make_test_dice(4, 1, 2)
>>> test_dice()
?
You should type in what you expect the output to be. To do so, you need
to first figure out what test_dice
will do, based on the description
above.
You can exit the unlocker by typing exit()
.
Typing Ctrl-C on Windows to exit out of the unlocker has been known to cause problems, so avoid doing so.
In general, for each of the unlocking tests, you might find it helpful to read through the provided skeleton for that problem before attempting the unlocking test.
Problem 1 (2 pt)
Implement the roll_dice
function in hog.py
. It takes two arguments:
a positive integer called num_rolls
giving the number of dice to roll
and a dice
function. It returns the number of points scored by rolling
the dice that number of times in a turn: either the sum of the outcomes
or 1 (Sow Sad).
-
Sow Sad. If any of the dice outcomes is a 1, the current player’s score for the turn is
1
.Examples
- Example 1: The current player rolls 7 dice, 5 of which are 1’s.
They score
1
point for the turn. - Example 2: The current player rolls 4 dice, all of which are 3’s.
Since Sow Sad did not occur, they score
12
points for the turn.
- Example 1: The current player rolls 7 dice, 5 of which are 1’s.
They score
To obtain a single outcome of a dice roll, call dice()
. You should
call dice()
exactly num_rolls
times in the body of roll_dice
.
Remember to call dice()
exactly num_rolls
times even if Sow Sad
happens in the middle of rolling. In this way, you correctly simulate
rolling all the dice together.
Understand the problem:
Before writing any code, unlock the tests to verify your understanding
of the question. Note: you will not be able to test your code using
ok
until you unlock the test cases for the corresponding question.
python3 ok -q 01 -u
Write code and check your work:
Once you are done unlocking, begin implementing your solution. You can check your correctness with:
python3 ok -q 01
Debugging Tips
If the tests don’t pass, it’s time to debug. You can observe the
behavior of your function using Python directly. First, start the Python
interpreter and load the hog.py
file.
python3 -i hog.py
Then, you can call your roll_dice
function on any number of dice you
want. The roll_dice
function has a default argument
value
for dice
that is a random six-sided dice function. Therefore, the
following call to roll_dice
simulates rolling four fair six-sided
dice.
>>> roll_dice(4)
You will find that the previous expression may have a different result each time you call it, since it is simulating random dice rolls. You can also use test dice that fix the outcomes of the dice in advance. For example, rolling twice when you know that the dice will come up 3 and 4 should give a total outcome of 7.
>>> fixed_dice = make_test_dice(3, 4)
>>> roll_dice(2, fixed_dice)
7
On most systems, you can evaluate the same expression again by pressing the up arrow, then pressing enter or return. To evaluate earlier commands, press the up arrow repeatedly.
If you find a problem, you need to change your
hog.py
file, save it, quit Python, start Python again, and then start evaluating expressions. Pressing the up arrow should give you access to your previous expressions, even after restarting Python.
Continue debugging your code and running the ok
tests until they all
pass. You should follow this same procedure of understanding the
problem, implementing a solution, testing, and debugging for all the
problems in this project.
One more debugging tip: to start the interactive interpreter automatically upon failing an
ok
test, use-i
. For example,python3 ok -q 01 -i
will run the tests for question 1, then start an interactive interpreter withhog.py
loaded if a test fails.
Problem 2 (3 pt)
Implement picky_piggy
, which takes the opponent’s current score
and
returns the number of points scored by rolling 0 dice.
-
Picky Piggy. A player who chooses to roll zero dice scores the
n
th digit of the decimal expansion of 1/7 (0.14285714…), wheren
is the opponent’s score. As a special case, ifn
is 0, the player scores 7 points.Examples
- Example 1: The current player rolls zero dice and the opponent has
a score of 3. The 3rd digit of the decimal expansion of 1/7 is 2:
0.14[2]85714285714285
, The current player will receive2
points. - Example 2: The current player rolls zero dice and the opponent has
a score of 14. The 14th digit of the decimal expansion of 1/7 is 4:
0.1428571428571[4]285
, so the current player will receive4
points. - Example 3: The current player rolls zero dice and the opponent has
a score of 0. The current player will receive
7
points.
- Example 1: The current player rolls zero dice and the opponent has
a score of 3. The 3rd digit of the decimal expansion of 1/7 is 2:
The goal of this question is for you to practice retrieving the digits of a number, so it may be helpful to keep in mind the techniques used in previous assignments for digit iteration.
However, your code should not use str
, lists, or contain square
brackets [
]
in your implementation. Aside from this constraint, you
can otherwise implement this function how you would like to.
Note: Remember to remove the
"*** YOUR CODE HERE ***"
string from the function once you’ve implemented it so that you’re not getting an unintentionalstr
check error.If the syntax check isn’t passing on the docstring, try upgrading your Python version to 3.8 or 3.9. It seems that the docstring being included in the check is specific to Python version 3.7, so updating your Python version should resolve the issue.
Hint: The decimal expansion of 1/7 is a 6-digit repeating decimal with the digits 142857. Therefore, the 2nd digit is the same as the 8th digit, the 14th, 20th, 26th, 32nd, etc.
Before writing any code, unlock the tests to verify your understanding of the question.
python3 ok -q 02 -u
Once you are done unlocking, begin implementing your solution. You can check your correctness with:
python3 ok -q 02
You can also test picky_piggy
interactively by entering
python3 -i hog.py
in the terminal and then calling picky_piggy
with
various inputs.
Problem 3 (2 pt)
Implement the take_turn
function, which returns the number of points
scored for a turn by rolling the given dice
num_rolls
times.
Your implementation of take_turn
should call both roll_dice
and
picky_piggy
when possible.
Before writing any code, unlock the tests to verify your understanding of the question.
python3 ok -q 03 -u
Once you are done unlocking, begin implementing your solution. You can check your correctness with:
python3 ok -q 03
👩🏽💻👨🏿💻 Pair programming? Remember to alternate between driver and navigator roles. The driver controls the keyboard; the navigator watches, asks questions, and suggests ideas.
Problem 4 (1 pt)
Implement hog_pile
, which takes the current player and opponent scores
and returns the points that the current player will receive due to Hog
Pile. If Hog Pile is not applicable, the current player receives 0
additional points.
-
Hog Pile. After points for the turn are added to the current player’s score, if the players’ scores are the same, the current player’s score doubles.
Examples
-
Example:
-
Both players start out at 0. (0, 0)
-
Player 0 rolls 2 dice and gets
5
points. (5, 0) -
Player 1 rolls 1 dice and gets
5
points. Player 1’s score doubles. (5, 10) -
Player 0 rolls 2 dice and gets
6
points. (11, 10) -
Player 1 rolls 8 dice and gets
1
points. Player 1’s score doubles. (11, 22)
-
Before writing any code, unlock the tests to verify your understanding of the question.
python3 ok -q 04 -u
Once you are done unlocking, begin implementing your solution. You can check your correctness with:
python3 ok -q 04
Problem 5 (4 pt)
Implement the play
function, which simulates a full game of Hog.
Players take turns rolling dice until one of the players reaches the
goal
score. A turn is defined as one roll of the dice.
To determine how many dice are rolled each turn, each player uses their
respective strategy (Player 0 uses strategy0
and Player 1 uses
strategy1
). A strategy is a function that, given a player’s score
and their opponent’s score, returns the number of dice that the current
player will roll in the turn. Don’t worry about implementing strategies
yet; you’ll do that in Phase 3.
Important: Your implementation should only need to use a single loop; you don’t need multiple loops. This might not affect passing the test cases if your logic is correct overall, but this could affect your composition grade for the project. Here’s the section of the syllabus on composition for projects.
Additionally, each strategy function should be called only once per turn. This means you only want to call
strategy0
when it is Player 0’s turn and only callstrategy1
when it is Player 1’s turn. Otherwise, the GUI and someok
tests may get confused.
If a player achieves the goal score by the end of their turn, i.e. after
all applicable rules have been applied, the game ends. play
will then
return the final total scores of both players, with Player 0’s score
first and Player 1’s score second.
Hints:
- You should call the functions you have implemented already.
- Call
take_turn
with four arguments (don’t forget to pass in thegoal
). Only calltake_turn
once per turn.- Call
hog_pile
to determine if the current player will gain additional points due to Hog Pile, and if so, how many points.- You can get the number of the next player (either 0 or 1) by calling the provided function
next_player
.- You can ignore the
say
argument to theplay
function for now. You will use it in Phase 2 of the project.- For the unlocking tests,
hog.always_roll
refers to thealways_roll
function defined inhog.py
.
Before writing any code, unlock the tests to verify your understanding of the question.
python3 ok -q 05 -u
Once you are done unlocking, begin implementing your solution. You can check your correctness with:
python3 ok -q 05
Once you are finished, you will be able to play a graphical version of
the game. We have provided a file called hog_gui.py
that you can run
from the terminal:
python3 hog_gui.py
Note: The GUI has been updated. See the announcement at the top of the page for instructions.
The GUI relies on your implementation, so if you have any bugs in your code, they will be reflected in the GUI. This means you can also use the GUI as a debugging tool; however, it’s better to run the tests first.
Make sure to submit your work so far to Canvas before the checkpoint deadline.
Check to make sure that you did all the problems in Phase 1:
python3 ok --score
Congratulations! You have finished Phase 1 of this project!
👩🏽💻👨🏿💻 Pair programming? This would be a good time to switch roles. Switching roles makes sure that you both benefit from the learning experience of being in each role.
Phase 2: Commentary
In the second phase, you will implement commentary functions that print
remarks about the game after each turn, such as:
"22 point(s)! That's a record gain for Player 1!"
A commentary function takes two arguments, Player 0’s current score and Player 1’s current score. It can print out commentary based on either or both current scores and any other information in its parent environment. Since commentary can differ from turn to turn depending on the current point situation in the game, a commentary function always returns another commentary function to be called on the next turn. The only side effect of a commentary function should be to print.
Commentary examples
The function say_scores
in hog.py
is an example of a commentary
function that simply announces both players’ scores. Note that
say_scores
returns itself, meaning that the same commentary function
will be called each turn.
def say_scores(score0, score1):
"""A commentary function that announces the score for each player."""
print("Player 0 now has", score0, "and Player 1 now has", score1)
return say_scores
The function announce_lead_changes
is an example of a higher-order
function that returns a commentary function that tracks lead changes. A
different commentary function will be called each turn.
def announce_lead_changes(last_leader=None):
"""Return a commentary function that announces lead changes.
>>> f0 = announce_lead_changes()
>>> f1 = f0(5, 0)
Player 0 takes the lead by 5
>>> f2 = f1(5, 12)
Player 1 takes the lead by 7
>>> f3 = f2(8, 12)
>>> f4 = f3(8, 13)
>>> f5 = f4(15, 13)
Player 0 takes the lead by 2
"""
def say(score0, score1):
if score0 > score1:
leader = 0
elif score1 > score0:
leader = 1
else:
leader = None
if leader != None and leader != last_leader:
print('Player', leader, 'takes the lead by', abs(score0 - score1))
return announce_lead_changes(leader)
return say
You should also understand the function both
, which takes two
commentary functions (f
and g
) and returns a new commentary
function. This returned commentary function returns another commentary
function which calls the functions returned by calling f
and g
, in
that order.
def both(f, g):
"""Return a commentary function that says what f says, then what g says.
>>> h0 = both(say_scores, announce_lead_changes())
>>> h1 = h0(10, 0)
Player 0 now has 10 and Player 1 now has 0
Player 0 takes the lead by 10
>>> h2 = h1(10, 8)
Player 0 now has 10 and Player 1 now has 8
>>> h3 = h2(10, 17)
Player 0 now has 10 and Player 1 now has 17
Player 1 takes the lead by 7
"""
def say(score0, score1):
return both(f(score0, score1), g(score0, score1))
return say
Problem 6 (1 pt)
Update your play
function so that a commentary function is called at
the end of each turn. The return value of calling a commentary function
gives you the commentary function to call on the next turn.
For example, say(score0, score1)
should be called at the end of the
first turn. Its return value (another commentary function) should be
called at the end of the second turn. Each consecutive turn, call the
function that was returned by the call to the previous turn’s commentary
function.
Hint: For the unlocking tests for this problem, remember that when calling
>>> print(9, 12)
9 12
Before writing any code, unlock the tests to verify your understanding of the question.
python3 ok -q 06 -u
Once you are done unlocking, begin implementing your solution. You can check your correctness with:
python3 ok -q 06
Problem 7 (3 pt)
Implement the announce_highest
function, which is a higher-order
function that returns a commentary function. This commentary function
announces whenever a particular player gains more points in a turn than
ever before. For example, announce_highest(1)
ignores Player 0
entirely and just prints information about Player 1. (So does its return
value; another commentary function about only Player 1.)
To compute the gain, it must compare the score from last turn
(last_score
) to the score from this turn for the player of interest
(designated by the who
argument). This function must also keep track
of the highest gain for the player so far, which is stored as
running_high
.
The way in which announce_highest
announces is very specific, and your
implementation should match the doctests provided. Don’t worry about
singular versus plural when announcing point gains; you should simply
use “point(s)” for both cases.
Hint: The
announce_lead_changes
function provided to you is an example of how to keep track of information using commentary functions. If you are stuck, first make sure you understand howannounce_lead_changes
works.
Hint: If you’re getting a
local variable [var] reference before assignment
error:This happens because in Python, you aren’t normally allowed to modify variables defined in parent frames. Instead of reassigning
[var]
, the interpreter thinks you’re trying to define a new variable within the current frame. We’ll learn about how to work around this in a future lecture, but it is not required for this problem.To fix this, you have two options:
1) Rather than reassigning
[var]
to its new value, create a new variable to hold that new value. Use that new variable in future calculations.2) For this problem specifically, avoid this issue entirely by not using assignment statements at all. Instead, pass new values in as arguments to a call to
announce_highest
.
Before writing any code, unlock the tests to verify your understanding of the question.
python3 ok -q 07 -u
Once you are done unlocking, begin implementing your solution. You can check your correctness with:
python3 ok -q 07
When you are done, you will see commentary in the GUI:
python3 hog_gui.py
Note: The GUI has been updated. See the announcement at the top of the page for instructions.
The commentary in the GUI is generated by passing the following function
as the say
argument to play
.
both(announce_highest(0), both(announce_highest(1), announce_lead_changes()))
Great work! You just finished Phase 2 of the project!
👩🏽💻👨🏿💻 Pair programming? Celebrate, take a break, and switch roles!
Phase 3: Strategies
In the third phase, you will experiment with ways to improve upon the basic strategy of always rolling a fixed number of dice. First, you need to develop some tools to evaluate strategies.
Problem 8 (2 pt)
Implement the make_averaged
function, which is a higher-order function
that takes a function original_function
as an argument.
The return value of make_averaged
is a function that takes in the same
number of arguments as original function
. When we call this returned
function on arguments, it will return the average value of repeatedly
calling original_function
on the arguments passed in.
Specifically, this function should call original_function
a total of
trials_count
times and return the average of the results of these
calls.
Important: To implement this function, you will need to use a new piece of Python syntax. We would like to write a function that accepts an arbitrary number of arguments, and then calls another function using exactly those arguments. Here’s how it works.
Instead of listing formal parameters for a function, you can write
*args
, which represents all of the arguments that get passed into the function. We can then call another function with these same arguments by passing these*args
into this other function. For example:
>>> def printed(f):
... def print_and_return(*args):
... result = f(*args)
... print('Result:', result)
... return result
... return print_and_return
>>> printed_pow = printed(pow)
>>> printed_pow(2, 8)
Result: 256
256
>>> printed_abs = printed(abs)
>>> printed_abs(-10)
Result: 10
10Here, we can pass any number of arguments into
print_and_return
via the*args
syntax. We can also use*args
inside ourprint_and_return
function to make another function call with the same arguments.
Read the docstring for make_averaged
carefully to understand how it is
meant to work.
Before writing any code, unlock the tests to verify your understanding of the question.
python3 ok -q 08 -u
Once you are done unlocking, begin implementing your solution. You can check your correctness with:
python3 ok -q 08
Problem 9 (2 pt)
Implement the max_scoring_num_rolls
function, which runs an experiment
to determine the number of rolls (from 1 to 10) that gives the maximum
average score for a turn. Your implementation should use make_averaged
and roll_dice
.
If two numbers of rolls are tied for the maximum average score, return the lower number. For example, if both 3 and 6 achieve a maximum average score, return 3.
You might find it useful to read the doctest and the example shown in the doctest for this problem before doing the unlocking test.
Important: In order to pass all of our tests, please make sure that you are testing dice rolls starting from 1 going up to 10, rather than starting from 10 to 1.
Before writing any code, unlock the tests to verify your understanding of the question.
python3 ok -q 09 -u
Once you are done unlocking, begin implementing your solution. You can check your correctness with:
python3 ok -q 09
Running experiments:
To run this experiment on randomized dice, call run_experiments
using
the -r
option:
python3 hog.py -r
For the remainder of this project, you can change the implementation of
run_experiments
as you wish. The function includes calls to
average_win_rate
for evaluating various Hog strategies, but most of
the calls are currently commented out. You can un-comment the calls to
try out strategies, like to compare the win rate for always_roll(8)
to
the win rate for always_roll(6)
.
Some of the experiments may take up to a minute to run. You can always
reduce the number of trials in your call to make_averaged
to speed up
experiments.
Running experiments won’t affect your score on the project.
👩🏽💻👨🏿💻 Pair programming? We suggest switching roles now, if you haven’t recently. Almost done!
Problem 10 (1 pt)
A strategy can try to take advantage of the Picky Piggy rule by
rolling 0 when it is most beneficial to do so. Implement
picky_piggy_strategy
, which returns 0 whenever rolling 0 would give
at least cutoff
points and returns num_rolls
otherwise.
Hint: You can use the function
picky_piggy
you defined in Problem 2.
Before writing any code, unlock the tests to verify your understanding of the question.
python3 ok -q 10 -u
Once you are done unlocking, begin implementing your solution. You can check your correctness with:
python3 ok -q 10
Once you have implemented this strategy, change run_experiments
to
evaluate your new strategy against the baseline. Is this strategy an
improvement over the baseline?
Problem 11 (1 pt)
A strategy can also take advantage of the Hog Pile rules. The Hog Pile
strategy always rolls 0 if doing so triggers the rule. In other cases,
it rolls 0 if rolling 0 would give at least cutoff
points.
Otherwise, the strategy rolls num_rolls
.
Hint: You can use the function
picky_piggy_strategy
you defined in Problem 10.Hint: Remember that the
hog_pile
check should be done after the points frompicky_piggy
have been added to the score.
Before writing any code, unlock the tests to verify your understanding of the question.
python3 ok -q 11 -u
Once you are done unlocking, begin implementing your solution. You can check your correctness with:
python3 ok -q 11
Once you have implemented this strategy, update run_experiments
to
evaluate your new strategy against the baseline.
Optional: Problem 12 (0 pt)
Implement final_strategy
, which combines these ideas and any other
ideas you have to achieve a high win rate against the baseline strategy.
Some suggestions:
picky_piggy_strategy
orhog_pile_strategy
are default strategies you can start with.- If you know the goal score (by default it is 100), there’s no point in scoring more than the goal. Check whether you can win by rolling 0, 1 or 2 dice. If you are in the lead, you might decide to take fewer risks.
- Choose the
num_rolls
andcutoff
arguments carefully. - Take the action that is most likely to win the game.
You can check that your final strategy is valid by running ok
.
python3 ok -q 12
You can also play against your final strategy with the graphical user interface:
python3 hog_gui.py
Note: The GUI has been updated. See the announcement at the top of the page for instructions.
The GUI will alternate which player is controlled by you.
Project submission
At this point, run the entire autograder to see if there are any tests that don’t pass:
python3 ok
You can also check your score on each part of the project:
python3 ok --score
Once you are satisfied, submit to complete the project.
Submissions will be in Canvas.
Congratulations, you have reached the end of your first CS 111 project! If you haven’t already, relax and enjoy a few games of Hog with a friend.