
CS 111: Introduction to Computer Science

MIDTERM 2 Review Key

(3 points) Recursive Objects: Tree
A Binary Search Tree is a sorted tree data structure where each Tree node only has two branches,
which are called left and right. Each Tree node’s left branch contains zero or more Tree nodes with
labels smaller than its label. Each Tree node’s right branch contains zero or more Tree nodes with
labels larger than its label.
Here is an example Binary Search Tree:

The code below defines a class called TreeNode that is a recursive object and has a left and right
branch.

class TreeNode:

"""A binary tree."""

empty = ()

def __init__(self, label, left=empty, right=empty):

self.label = label

self.left = left

self.right = right

def is_leaf(self):

"""

>>> t = TreeNode(1)

>>> t.is_leaf()

True

>>> t = TreeNode(5, TreeNode(3), TreeNode(7))

>>> t.is_leaf()

False

"""

return not self.left and not self.right

We want to create a function for a TreeNode sorted as a Binary Search Tree to return a list of the
labels of the tree in sorted order – smallest to greatest. For example, the example tree (above) should
return the list [1, 2, 3, 5, 8, 13, 21].

Here is the code with missing parts.

def inorder(curNode):
""" Argument curNode must be a sorted binary tree
>>> t = TreeNode(5, TreeNode(3), TreeNode(7))
>>> inorder(t)
[3, 5, 7]
"""
labels = []
if curNode != TreeNode.empty:

labels += inorder(___(a)___)
labels.append(___(b)___)
labels += inorder(___(c)___)

return labels

Note that the doc string above is for this tree:

(1) (1 pt) What line of code could go in blank (a)?
A. curNode.left
B. curNode.label
C. curNode.right

(2) (1 pt) What line of code could go in blank (b)?
A. curNode.left
B. curNode.label
C. curNode.right

(3) (1 pt) What line of code could go in blank (c)?
A. curNode.left
B. curNode.label
C. curNode.right

(7 points) Regular Expressions

(4) (2 pts) Given the pattern “[def]+QY?[4-6]”, which of the following would be completely
matched? Select the two that are correct.

A. “def456”
B. “dQ5”
C. “dey4”
D. “defQY6”
E. “xyzdQY4”
F. “efY6”
G. “DQY4”

(5) (3 pts)Which of the following patterns would match “def” and “ddeff” but not “ef”? Select the
three that are correct.

A. “d+ef+”
B. “[def]+”
C. “d?[ef]”
D. “d[def]+”
E. “.*ef.*”
F. “.?def.?”

(6) (2 pts)Which of the following patterns would completely match “Matthew”, “Mark”, and “John”
but not completely match “Luke”? Select the two that are correct.

A. “(matthew|mark|john)”
B. “([A-K]|[M-Z])\w*”
C. “[MJ]?\w+”
D. “((Ma|Jo)[trh].*)?”
E. “\w[aeiou]\w+”
F. “\w+”

(6 points) Searching a Sorted List
Given a sorted list of `n` integers, how do we determine if some target value is in the list? We could
iterate and search through the entire list until we find the target or exhaust the search.

(7) (Extra Credit - 1 pt) Given the class discussion about Efficiency, what would the run-time
bound be for the search described above?

A. Quadratic,O(n2)

B. Linear,O(n)

C. Logarithmic,O(log2 n)

D. Constant,O(1)

A binary search is performed by using a Divide and Conquer algorithm. Divide and Conquer algorithms
divide the list into two smaller lists and then recursively operate on the sublists. With binary search, the
algorithm divides the list into two sublists, where one sublist has smaller numbers and the second
sublist has larger numbers. Binary search then discards the sublist that is too big or too small for the
target value being searched. Binary search only continues to search the sublist that might actually
contain the target value. This decision to discard a sublist is made with just one comparison.

For example, given the following sorted list: [1, 4, 6, 8, 9, 10, 11, 12], there are eight elements in sorted
order. If we are trying to search this list for the value 10, then Binary Search will first split the list into
two sublists: [1, 4, 6, 8] and [9, 10, 11, 12]. The target value, 10, can only be found in the numbers >= 9,
so we discard the first sublist and recursively search on the second sublist.

(8) (Extra Credit - 1 pt) Given the class discussion about Efficiency, what would the run-time
bound be for the described binary search?

A. Quadratic,O(n2)

B. Linear,O(n)

C. Logarithmic,O(log2 n)

D. Constant,O(1)

The code on the next page is a recursive implementation of Binary Search (with some lines missing).
Determine what should fill in the blanks.

Recursive implementation of the binary search algorithm to return

the position (index) of `target` in sub-list sorted_list[left…high_index]

def binarySearch(sorted_list, low_index, high_index, target):

Base condition (search space is exhausted)

if low_index > high_index:

return -1

find the middle value in the search space and compares it with the target

mid_index = (low_index + high_index) // 2

Base condition (a target is found)

if target == sorted_list[mid_index]:

return (a)

discard all elements in the high_index search space, including the middle

element

elif target < sorted_list[mid_index]:

return binarySearch((b))

discard all elements in the low_index search space, including the middle

element

else:

return binarySearch((c))

(9) (1 pt) What line of code could go in blank (a)?
A. sorted_list

B. mid_index

C. low_index

D. high_index

E. sorted_list[mid_index]

F. sorted_list[low_index]

G. sorted_list[high_index]

(10) (1 pt) What line of code could go in blank (b)?
A. sorted_list, low_index, mid_index - 1, target

B. sorted_list, mid_index + 1, high_index, target

C. sorted_list, low_index, high_index, target

D. sorted_list, high_index, low_index, target

(11) (1 pt) What line of code could go in blank (c)?
A. sorted_list, low_index, mid_index - 1, target

B. sorted_list, mid_index + 1, high_index, target

C. sorted_list, low_index, high_index, target

D. sorted_list, high_index, low_index, target

Recall from our class discussion that all recursive algorithms can also be written iteratively (and vice
versa). The code on this page is an iterative implementation of Binary Search (with some lines
missing).

Function to determine if a `target` exists in the sorted list `sorted_list`

or not using a binary search algorithm. Returns index or -1 if not found.

def binarySearch(sorted_list, target):

search space is sorted_list[low_index…high_index]

(low_index, high_index) = (0, len(sorted_list) - 1)

loop till the search space is exhausted

while low_index <= high_index:

find the middle value in the search space and compares it with the

target

mid_index = (low_index + high_index) // 2

target is found

if target == sorted_list[mid_index]:

return (d)

discard elements in the high_index search space, including the middle

element

elif target < sorted_list[mid_index]:

high_index = (e)

discard elements in the lower search space, including the middle

element

else:

low_index = (f)

`target` doesn't exist in the list

return -1

(12) (1 pt) What line of code could go in blank (d)?
A. mid_index / 2

B. mid_index

C. mid_index * 2

(13) (1 pt) What line of code could go in blank (e)?
A. mid_index
B. mid_index - 1

C. mid_index + 1

D. mid_index * 2

(14) (1 pt) What line of code could go in blank (f)?
A. mid_index

B. mid_index + 1

C. mid_index - 1

D. mid_index * 2

(5 points) Generators for Recursive Objects: Link
The code below defines a class called Link that is a recursive object. Note that the member variable
that points to the next Link is called next, instead of rest as was shown in the lecture slides (using
the name “next” is common practice with linked lists). The code uses label instead of first as
shown in the slides.

class Link:

"""A linked list."""

empty = ()

def __init__(self, label, next=empty):

assert next is Link.empty or isinstance(next, Link)

self.label = label

self.next = next

The function below takes an argument of type Link and creates a generator that will give the label of
each Link in the order of the linked list.

def inorder(linked_list):

"""

>>> ll = Link(1, Link(2, Link(3, Link(5, Link(8, Link(13))))))

>>> gen = inorder(ll)

>>> next(gen)

1

>>> next(gen) # Second call

2

>>> next(gen) # Third call

3

"""

lnk = linked_list

while (a) :

yield (b)

(c)

(15) (1 pt) What line of code could go in blank (a)?
A. lnk is Link.empty

B. lnk is not Link.empty

C. lnk.next is not Link.empty

D. lnk.next is Link.empty

(16) (2 pts) What line of code could go in blank (b)?
A. linked_list

B. lnk

C. lnk.label

D. lnk.next

(17) (2 pts) What line of code could go in blank (c)?
A. lnk = lnk.value

B. lnk = lnk.next

C. lnk = linked_list

D. lnk = linked_list.next

E. lnk = linked_list.value

Extra credit (2 pts): Suppose we want to create a generator to return the reverse order of the list. This
can be performed using recursion. Complete the following code for extra credit.

def reverse(linked_list):

"""

>>> ll = Link(1, Link(2, Link(3, Link(5, Link(8, Link(13))))))

>>> gen = reverse(ll)

>>> next(gen)

13

>>> next(gen) # Second call

8

>>> next(gen) # Third call

5

"""

if linked_list is not Link.empty:

yield from (d)

yield (e)

(18) (extra credit - 1 pts) What line of code could go in blank (d)?
A. reverse(linked_list.value)

B. reverse(linked_list.next)

C. reverse(linked_list)

(19) (extra credit - 1 pts) What line of code could go in blank (e)?
A. linked_list.next

B. linked_list

C. linked_list.label

(7 points) WWPD Recursive Objects: Doubly Linked List
A doubly linked list is a list where each List node has a reference to both the next List node and the
previous List node, which are stored as next and prev respectively in the object. See the code below
and answer the questions.

class DoubleLink:

"""A doubly linked list."""

empty = ()

def __init__(self, label, next=empty, prev=empty):

assert next is DoubleLink.empty or isinstance(next, DoubleLink)

assert prev is DoubleLink.empty or isinstance(prev, DoubleLink)

self.label = label

self.next = next

if next is not DoubleLink.empty:

next.prev = self

self.prev = prev

if prev is not DoubleLink.empty:

prev.next = self

Suppose we run the following code to create a DoubleLink list (graphically shown below)

>>> n5 = DoubleLink(“CS235”)

>>> n3 = DoubleLink(“CS110”)

>>> n4 = DoubleLink(“CS111”, n5, n3)

>>> start = n3

(20) (1 pt) What would Python display? >>> start.label

A. CS110
B. CS111
C. CS235

(21) (1 pt) What would Python display? >>> start.next.label

A. CS110
B. CS111
C. CS235

(22) (1 pt) What would Python display? >>> start.next.next.label

A. CS110
B. CS111
C. CS235

(23) (2 pts) What would Python display? >>> start.next.next.prev.label

A. CS110
B. CS111
C. CS235

(24) (2 pts) What would Python display? >>> start.next.next.prev.prev.label

A. CS110
B. CS111
C. CS235

(2 points) Testing
Consider the following simple class.

class Grid:
def __init__(self, width, height):

assert width > 0 and height > 0
self.height = height
self.width = width

def in_bounds(self, x, y):
if x < 0 or x >= self.width:

return False
if y < 0 or y >= self.height:

return False
return True

(25) (1 pt) Which of the following docstrings would NOT be a valid doctest for the in_bounds
function?

A. >>> b = Grid(4,13)
>>> b.in_bounds(0,0)
True

B. >>> b = Grid(3,4)
>>> b.in_bounds(3,4)
True

C. >>> b = Grid(2,2)
>>> b.in_bounds(5,1)
False

D. >>> b = Grid(10,30)
>>> b.in_bounds(-2,0)
False

E. >>> b = Grid(20, 20)
>>> b.in_bounds(19,19)
True

(26) (1 pt) Which of the following would be a good pytest function to verify that the in_bounds
function properly responds to a negative y value?

A. def test_negative_y_false():
b = Grid(20, 20)
assert b.in_bounds(-1,5) == False

B. def test_negative_y_false():
b = Grid(20, 20)
assert b.in_bounds(20,-5) == False

C. def test_negative_y_false():
b = Grid(20, 20)
assert b.in_bounds(0,0) == True

D. def test_negative_y_false():
b = Grid(20, 20)
assert b.in_bounds(-1,-5) == False

E. def test_negative_y_false():
b = Grid(20, 20)
assert b.in_bounds(17,-1) == False

(27) (Extra Credit - 1 pt) What is the minimum number of tests we would need to write, assuming
each test exercises one condition, to test that in_bounds() responds properly to the possible
input combination for x & y, both valid and invalid?

A. 1
B. 2
C. 3
D. 4
E. 5
F. 6
G. 7
H. 8

(10 points) Language Parsing - Postfix Notation
In the calculator project, you parsed the input expressions to create a syntax tree, and then evaluated
that tree to find the value of the expression that was provided. However, once we have the syntax tree,
we can do more than just evaluate the expression. For example, we could use that syntax tree to
rewrite the expression into another language or syntax. For example if we had a syntax tree of a
python program, it would be possible to rewrite that program in C++ or Java just from the syntax tree
(assuming there were translations for everything).

In this question, we are going to take our calculator expressions, which were written in what is known
as prefix notation, where the operator precedes the operands, and convert them to postfix notation,
where the operands precede the operator. Some examples:

If we had the following calculator expression for 1 + 2:
(+ 1 2)
It would be written in postfix notation as
1 2 +

The expression for (3 * 6) - (1 + 2):
(- (* 3 6) (+ 1 2))
Would be written as
3 6 * 1 2 + -

Notice that the postfix notation doesn’t require any parentheses. When evaluating, each operator
simply uses the two operands before it and replaces operands and operator with the value of the
operation at its position in the expression as it is evaluated. Thus that last expression would evaluate
like this:

3 6 * 1 2 + -
18 1 2 + -
18 3 -
15

(28) (1 pt)What would the postfix notation be for the expression (* 3 2)
A. 3 * 2
B. (3 2 *)
C. 2 3 *
D. * 2 3
E. 3 2 *

(29) (1 pt)What would the postfix notation be for the expression (+ 2 (* 7 5))
A. 2 + (7 * 5)
B. (5 * 7) + 2
C. ((7 5 *) 2 +)
D. 2 7 5 * +
E. 2 + (7 5 *)

Let’s build a function that can traverse our calculator syntax tree and write out the expression in postfix
notation. Remember that our syntax tree is composed of Pair objects where first is either an operator
or a Pair object containing a sub expression and rest is either the next Pair object in the sub-expression
or nil which represents the end of that expression. Thus our calculator expression (+ (* 3 2) 1) would
be represented as:

Pair('+', Pair(Pair('*', Pair(3, Pair(2, nil))), Pair(1, nil)))
and would be written in postfix notation as:
3 2 * 1 +

Here’s the framework for the code to write this out

def postfix(syntax_tree):
"""
syntax_tree is a calculator syntax tree represented by Pair objects.

This
function returns a string representing the calculator expression in
postfix notation. E.g. the calculator expression (+ (* 3 2) 1) would
be represented by the string ‘3 2 * 1 +’.
>>> postfix(Pair('+',Pair(Pair('*',Pair(3,Pair(2 nil))),Pair(1,nil))))
‘3 2 * 1 +’
"""
if syntax_tree is nil:

_____(a)_____
if isinstance(syntax_tree, (int, float)):

_____(b)_____
if isinstance(syntax_tree, Pair):

if _____(c)_____:
return postfix(__(d)__) + postfix(__(e)__) + f"{__(f)__} "

else:
return postfix(syntax_tree.first)

Use the syntax tree for (+ 1 (* 3 2)) (given in the docstring) to help you figure out the code that should
fill in the blanks and answer the following questions:

(30) (2 pts)What is/are the base case(s) for this recursive function? Select all that apply
A. syntax_tree is a Pair object
B. syntax_tree is the nil object
C. syntax_tree is one of the operators (+, -, *, /)
D. syntax_tree is an integer or floating point number

(31) (1 pt)What should be returned in the case where t is nil? What code should go in line (a)?
A. return syntax_tree
B. return ""
C. return 0
D. return None

(32) (1 pt)What should be returned in the case where t is a floating point or integer number?
What code should go in line (b)?

A. return 0
B. return none
C. return syntax_tree
D. return f"{syntax_tree}"
E. return f"{syntax_tree} "

(33) (1 pt) How do we check to see if the item in the current pair is one of our operators? What
code should go in line (c)?

A. syntax_tree in ['+', '-', '*', '/']
B. syntax_tree in [+, -, *, /]
C. syntax_tree.first in ['+', '-', '*', '/']
D. syntax_tree.first in [+, -, *, /]

If the current item is one of our operators, we need to return the first operand, the second operand, and
then the operator. The following questions ask you to fill in the items for lines (d), (e), * (f) to make that
happen.

(34) (1 pt)What value should go in line (d)?
A. 0
B. None
C. nil
D. syntax_tree
E. syntax_tree.first
F. syntax_tree.rest
G. syntax_tree.rest.rest

(35) (1 pt) What value should go in line (e)?
A. 0
B. None
C. nil
D. syntax_tree
E. syntax_tree.first
F. syntax_tree.rest
G. syntax_tree.rest.rest

(36) (1 pt)What value should go in line (f)?
A. 0
B. nil
C. None
D. syntax_tree
E. syntax_tree.first
F. syntax_tree.rest
G. syntax_tree.rest.rest

